CS 232:

Fall 2023
Artificial Intelligence a

Prof. Carolyn Anderson
Wellesley College



Reminders

[ have help hours Monday from 4-5:30pm
Lepei's help hours: Sundays 6-8pm

Lyra's help hours: Wednesdays 2-4pm
Reading for next Tuesday: YLLATAILY 3-4



Recap



Defining A Search Problem
S*e’ns: Q VepwwH)h\m of Wﬁsw FW#?Q(%«HOM
Noduz a Oske sWudore  (4resnhny -
cstote, patemtiode , claidren, actn,
“‘De&’m« cost 0&,;47/17
Goel: e otetes) wele Wy fo (each
atart Stove: bl Sty ?o;wt

S e o stares et fore

os Fem fne gedT gk Ao Frna
609\ Mele

Optima\ Solubion: 4 shorkesl  Solorn

So[u\’i on:



Graph Search vs Tree Search

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf nose and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontierl explored set

OR

Slides adapted from Chris Callison-Burch



Search Strategies

Review: Strategy = order of tree expansion
* Implemented by different queue structures (LIFO, FIFO, priority)

Dimensions for evaluation
Completeness- always find the solution?
Optimality - finds a least cost solution (lowest path cost) first?
Time complexity - # of nodes generated (worst case)
Space complexity - # of nodes simultaneously in memory (worst case)

Time/space complexity variables
« b, maximum branching factor of search tree
* d, depth of the shallowest goal node
« m, maximum length of any path in the state space (potentially «)

Slides adapted from Chris Callison-Burch



Uninformed Search

Uses only information available in problem definition

Informally:
Uninformed search: All non-goal nodes in frontier look equally good
Informed search: Some non-goal nodes can be ranked above others.

Slides adapted from Chris Callison-Burch



Breadth-first search

|dea:
* Expand. vest unexpanded node

Implementation:

ris FIFO (First-In-First-Out) Queue:
e Put successors at the end of frontier successor list.

Slides adapted from Chris Callison-Burch



Properties of breadth-first search

Complete? 1es GE 4w «EN\WQS
Optimal? ‘i@sf (asswm/tj e Meas Ve cost & o SJre,OS)

Time Complexity? O( bd)
Space Complexity? () (bd>

Slides adapted from Chris Callison-Burch



Exponential Space (and time) Is Not Good...

« Exponential complexity uninformed search problems
but the smallest instances.

annot be solved for any

/ requirements are a bigger problem than ¢ time.)
DEPTH NODES TIME MEMORY
2 110 0.11 milliseconds 107 kilobytes
4 11110 11 milliseconds 10.6 megabytes
6 10° 1.1 seconds 1 gigabytes
8 108 2 minutes 103 gigabytes
10 1070 3 hours 10 terabytes
12 1072 13 days 1 petabytes
14 104 3.5 years 99 petabytles

Assumes b=10, 1M nodes/sec, 1000 bytes/node

Slides adapted from Chris Callison-Burch



Depth-First Search



Depth-first search

ldea:
* Expand unexpanded node

Implementation:

IS LIFO (Last-In-First-Out) Queue:
« Put successors at the front of frontier successor list.

Slides adapted from Chris Callison-Burch



@ (5] . current X
O Q @ ® © © O discovered y
o7 @ Q O (2 O @ @ node done
o (J 4( @ Q O O—0O O—Q . -
O S ® ® e ® & & @ Undiscovered edge
®© O ® D 0\ @& ® N\ Discovered edge
@ O ®/ @ O O O Q Q 2\ ©®
C & O /O0—C O @ @ | O—OC O | @
(2. ® O O O @ O @ O Q
0 @& & \O O—0O Q. QO | Q@ Q
(o] @ (O () (O O O @ @ () 1 x=start vertex(1)
@ O O QA @ 113 & 2 dfs(x)
3
® © @ Q —@ O @ S abeani:
e @ O & O Q ® O 5 mark x as visited
(10} () @ (59) @. 149 6 for each y in X connections:
(2] (50) S O O 7 if y not visited then
2—@ QO @ O F—0C §  ds0)
e &—@ |\ @0—@ ® ©
—0—@ ® Q
O O (52) @

Please subscribe @youtube.com/gjenkinslbcc or with icon in lower right >>>



https://www.youtube.com/watch?v=NUgMa5coCoE

Properties of depth-first search

Complete? 125 (f Kiee 1> fmite

optimal? Ny

M m= /naxyhurn
Time Complexity? O (b ) oF sedvein
Space Complexity? (7 ( 5% D SP@C&

Slides adapted from Chris Callison-Burch



Depth-first vs Breadth-first

Use depth-first if
* Space is restricted

* There are many possible solutions with long paths and wrong paths are usually
terminated quickly

* Search can be fine-tuned quickly

Use breadth-first if
* Possible infinite paths
* Some solutions have short paths
* Can quickly discard unlikely paths

Slides adapted from Chris Callison-Burch



Search Conundrum

Breadth-first
v Complete,

ZI Optimal
x| but uses O(bY) space

Depth-first

x] Not complete unless m is bounded
x] Not optimal

x] Uses O(b™M) time; terrible if m >>d
vl but only uses O(b*m) space

Slides adapted from Chris Callison-Burch



Depth-limited search: A building block

Depth-First search but with depth limit .
* i.e. nodes at depth I have no successors.

* No infinite-path problem!

If I = d (by luck!), then optimal
* But:
* If ] <dthen incomplete &

* If 1 > dthen not optimal ‘©

0

Time complexity: O(bl)
Space complexity: 0([9[)@

Slides adapted from Chris Callison-Burch



Summary of algorithms

Criterion | Breadth- Depth- Depth- Iterative
First First limited deepening

Complete? | YES NO @ YES”

Time b?
Space bm O
optimal? | YES @ @

aee(

Slides adapted from Chris Callison-Burch




