CS 232:

Fall 2023
Artificial Intelligence a

Prof. Carolyn Anderson
Wellesley College



Reminders

Homework 3 will be released today
Lyra has help hours Wednesday
My help hours canceled due to conference

Next class is REMOTE (on Zoom)



5 4 Sy dher
W ot Confosing of

Concey vy €




(orprste
Adyesericl Nebds (GANSD

—

Q2
et 15 4 e
I Nar
W fowd Confosing of
CO\/\L‘C{(/UV“’\?,

S



Recap



Search Tree Root node =
start state

Expanded nodes

Tatooine

Alderaan Onderon Endor Ryloth

Frontier Choose leaf node from frontier for expansion
according to to the search strategy

Determines the
search process

Slides adapted from Chris Callison-Burch



Search Strategies

Review: Strategy = order of tree expansion
* Implemented by different queue structures (LIFO, FIFO, priority)

Dimensions for evaluation
Completeness- always find the solution?
Optimality - finds a least cost solution (lowest path cost) first?
Time complexity - # of nodes generated (worst case)
Space complexity - # of nodes simultaneously in memory (worst case)

Time/space complexity variables
« b, maximum branching factor of search tree
* d, depth of the shallowest goal node
« m, maximum length of any path in the state space (potentially «)

Slides adapted from Chris Callison-Burch



Graph Search vs Tree Search

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf nose and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add node to the explored set

expand the chosen node, adding the resulting nodes to the frontier
only if not in the frontier or explored set

Slides adapted from Chris Callison-Burch



Depth-limited search: A building block

Depth-First search but with depth limit .
* i.e. nodes at depth I have no successors.

* No infinite-path problem!

If I = d (by luck!), then optimal
* But:
* If ] <dthen incomplete &

* If 1 > dthen not optimal ‘©

0

Time complexity: O(bl)
Space complexity: 0([9[)@

Slides adapted from Chris Callison-Burch



: \Rae
Summary of algorithms 46 k?\s o i
\

N\
\ 3
Criterion | Breadth- Depth- Depth- Iterative
First First ) limited  deepening
Complete? | YES NO NO YES
Time b? )L b’ b;
Space | (B4 pm bl bd
Optimal? | YES NO NO YES

o=

e IR um a@ﬂﬂm (obwl

dlad)h\ oF shallowesr ﬂv@l

Slides adapted from Chris Callison-Burch

of sl
rfW\)



Informed Search



Informed Search

An informed search strategy uses
domain-specific information about the
location of the goals in order to find a
solution more efficiently than
uninformed search.

Hints will come as part of a heuristic
function denoted h(n).

One of the most famous informed search
algorithms is A* which was developed for
robot navigation.

Shakey the robot was developed at the .
Stanford Research Institute from 1966 to
1972.

Slides adapted from Chris Callison-Burch





https://www.youtube.com/watch?v=7bsEN8mwUB8

Motivation: Map Navigation Problems

All our search methods so far
assume step-cost = 1

This is only true for some problems

Slides adapted from Chris Callison-Burch



g(N): the path cost function

o Our assumption so far: All moves equal in cost
= Cost =# of nodes in path-1
= g(N) = depth(N) in the search tree

Assign @ Uil cost o @wi/ts?ep;

C (;J=13 (osr  fem N to N,
4 (N3 = c(0,D« (4,21 2,2

Slides adapted from Chris Callison-Burch



Uniform-cost search (UCS)
Cemd  PES V\/ cost
Franvied : prioty - queve ordersd by gln)
Test ¢ = vode 5 3 el o\
Nen e et iF

UV)MN QA Node o\ ([le/i’V\’N"/ i

we vk D e e Yo T
Oyre  Stef€

Slides adapted from Chris Callison-Burch



Shape of Search

o Breadth First Search explores equally in
all directions. Its frontier is implemented
as a FIFO queue. This results in smooth

contours or “plys”.

o Uniform Cost Search lets us prioritize
which paths to explore. Instead of
exploring all possible paths equally, it
favors lower cost paths. Its frontier is a

priority queue. This results in “cost
contours”.

Slides adapted from Chris Callison-Burch



A Better ldea...

o Node expansion based on o1 estimate which
o General approach of informed search:
: node selected for expansion
based on an
includes estimate of distance to goal (new idea!)
o Implementation: Sort frontier queue by this new
= Special cases: greedy search, and

S(V\\ = cost funcEn dell 08 CosY fem S&j\rﬁﬁ,

- hawine et estivmies
kil cosk £em W to Goal

Slides adapted from Chris Callison-Burch



Simple, useful estimate heuristic:
straight-line distances

. s Arad 366 Mehadia 241
Bucharest 0 Neamt 234

Craiova 160 Oradea 380

Dobreta 242 Pitesti 100

Eforie 161 Rimnicu Vilcea 193

Fagaras 176 Sibiu 253

Giurgiu 77 Timisoara 329

Hirsova 151 Urziceni 80

Iasi 226 Vaslui 199

Timisoara Lugoj 244 Zerind 374

N

Lugoj Pitesti

Mehadia

120

4 Craiova

Slides adapted from Chris Callison-Burch



Greedy Best-First Search



Greedy best-first search:

Expands the node that to be closest to goal

Completely ignores the costto get to

In our Romanian map, h(n) = hs;p(n) = straight-line distance from 1 to Bucharest
In a grid, the heuristic distance can be calculated using the “Manhattan distance”:

def heuristic(a, b):
# Manhattan distance on a square grid
return abs(a.x - b.x) + abs(a.y - b.y)

Slides adapted from Chris Callison-Burch



Greedy best-first search example

Frontier queue:
Arad 366
366
Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Dobreta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199
e Initial State = Arad Lugoj 244 Zerind 374

e Goal State = Bucharest
Slides adapted from Chris Callison-Burch



Properties of greedy best-first search

No!
 Found:

e Shorter:

™] Oradea

Fagaras

- Timisoara

111 = Lugol

70
] Mehadia
75
Dobreta [ 120

Rimnicu Vilcea

Pitesti

138

. Craiova

Neamt
— 87
] lasi
92
] Vaslui
4
211 s
™] Hirsova
" rzlcenl
86
Bucharest
=]
Eforie
] Giurgiu

Slides adapted from Chris Callison-Burch



A* Search



A*search 7 poms et sre esqunave o
V@(?H‘Z{ Pf@/yu‘wm] ﬁ)"ﬁﬂ’lS _

h(ny

]C(m) = 6(/1\) « N ((/])
q(1) = kel (ow from et YO nale
N[0) = eshmeid (o Fom Neck ¥ el

Flay= edmia fotal (o5 of poin fram
Storf 4o cpol

Slides adapted from Chris Callison-Burch



Idea: Admissibility

e
Heuristi - Tron @

Inadmissible Admissible (optimistic)
(pessimistic) heuristics heuristics slow down
break optimality by bad plans but never
trapping good plans on outweigh true costs

the frontier

Slides adapted from Chris Callison-Burch



UCS vs A* Contours

Uniform-cost expands equally in all “directions”
Sta® Goal

A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Sta rtGoaI

Slides adapted from Dan Klein and Pieter Abbeel



A* Applications

Pathing / routing problems (A* is in your GPS!)
Video games
Robot motion planning

Resource planning problems

Slides adapted from Chris Callison-Burch



Heuristics



Heuristic Functions

For the 8-puzzle
« Avg. solution cost is about 22
steps
 (branching factor < 3)
* (branching factor < 3)
« A good heuristic function can
reduce the search process

Slides adapted from Chris Callison-Burch



Admissible Heuristics

For the 8-puzzle:

hoop(n) = number of out of place tiles

h,.,(n) = total Manhattan distance (i.e., #
of moves from desired location of
each tile)

hOOp(S) =8
Ny(S) = 3+1+242+2+3+3+2 = 18

Slides adapted from Chris Callison-Burch



Key: Admissibility

Inadmissible (pessimistic) heuristics
break optimality by pushing good
plans too far back on the frontier,
which means they may never get
expanded.

Admissible (optimistic) heuristics
slow down bad plans but never
outweigh true costs. That means
that the true best plan will always
be expanded.

Slides adapted from Chris Callison-Burch



