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Recap



Search
We’ve seen two kinds of search strategies so far:

✦ Uninformed search
- Breadth-first search
- Depth-first search

✦ Informed search
- Uniform cost search
- A* search
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Adversarial	Search



So far, we have only considered one-player games. 

What happens when we add another player?

Search



Multiplayer	Games
In competitive multiplayer games, we have to consider 
our opponent’s possible actions, as well as our own.

We call this adversarial search.



Game Playing State-of-the-Art
▪ Checkers: 1950: First computer player.  

1994: First computer champion: 
Chinook ended 40-year-reign of human 
champion Marion Tinsley using 
complete 8-piece endgame. 2007: 
Checkers solved! 

▪ Chess: 1997: Deep Blue defeats human 
champion Gary Kasparov in a six-game 
match.  Deep Blue examined 200M 
positions per second, used very 
sophisticated evaluation and 
undisclosed methods for extending 
some lines of search up to 40 ply.  
Current programs are even better, if 
less historic. 

▪ Go: 2016: Alpha GO defeats human 
champion. Uses Monte Carlo Tree 
Search + neural network to learn 
evaluation function. 

▪ Go + Chess + Shogi: 2017: Alpha Zero 
learns all 3 games using 
reinforcement learning to play 
against itself.
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▪ Many different kinds of games! 

▪ Axes: 
▪ Deterministic or stochastic? 
▪ One, two, or more players? 
▪ Zero sum? 
▪ Perfect information (can you see the state)? 

▪ Want algorithms for calculating a strategy (policy) 
which recommends a move from each state

Types of Games
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Deterministic Games

▪ Many possible formalizations, one is: 
▪ States: S (start at s0) 
▪ Players: P={1...N} (usually take turns) 
▪ Actions: A (may depend on player / state) 
▪ Transition Function: SxA → S 
▪ Terminal Test: S → {t,f} 
▪ Terminal Utilities: SxP → R 

▪ Solution for a player is a policy: S → A
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Zero-Sum Games

▪ Zero-Sum Games 
▪ Agents have opposite utilities 

(values on outcomes) 
▪ Lets us think of a single value 

that one maximizes and the 
other minimizes 

▪ Adversarial, pure competition

▪ General Games 
▪ Agents have independent 

utilities (values on outcomes) 
▪ Cooperation, indifference, 

competition, and more are all 
possible
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Adversarial Search
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Single-Agent Trees

8

2 0 2 6 4 6… …
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Value of a State

8

2 0 2 6 4 6… …
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Adversarial Game Trees
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Minimax Values

+8-10-5-8

States Under Agent’s Control: States Under Opponent’s Control:
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Tic-Tac-Toe Game Tree
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Adversarial Search (Minimax)

▪ Deterministic, zero-sum games: 
▪ Tic-tac-toe, chess, checkers 
▪ One player maximizes result 
▪ The other minimizes result 

▪ Minimax search: 
▪ A state-space search tree 
▪ Players alternate turns 
▪ Compute each node’s minimax 

value: the best achievable 
utility against a rational 
(optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values: 
part of the game 

Minimax values: 
computed recursively
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Minimax Implementation

def min-value(state): 
initialize v = +∞ 
for each successor of 

state: 
v = min(v, max-

value(successor)) 
return v

def max-value(state): 
initialize v = -∞ 
for each successor of 

state: 
v = max(v, min-

value(successor)) 
return v
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Minimax Implementation (Dispatch)

def value(state): 
if the state is a terminal state: return the 

state’s utility 
if the next agent is MAX: return max-

value(state) 
if the next agent is MIN: return min-

value(state)

def min-value(state): 
initialize v = +∞ 
for each successor of 

state: 
v = min(v, 

value(successor)) 
return v 

def max-value(state): 
initialize v = -∞ 
for each successor of 

state: 
v = max(v, 

value(successor)) 
return v
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Minimax Example

12 8 5 23 2 144 6
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Minimax Properties

Optimal against a perfect player.  Otherwise?

10 10 9 100

max

min
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Video of Demo Min vs. Exp (Min)
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Video of Demo Min vs. Exp (Exp)
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Another	Demo

http://web.mit.edu/dxh/www/adverse/index.html#


Minimax	Summary
✦ Rank final game states by their final scores (for tic-

tac-toe or chess: win, draw, loss).

✦ Rank intermediate game states by whose turn it is 
and the available moves.
- If it's X's turn, set the rank to that of the maximum 

move available. If a move will result in a win, X 
should take it.

- If it's O's turn, set the rank to that of the minimum 
move available. If a move will result in a loss, X 
should avoid it.



Ef+iciency



Minimax Efficiency

▪ How efficient is minimax? 
▪ Just like (exhaustive) DFS 
▪ Time: O(bm) 
▪ Space: O(bm) 

▪ Example: For chess, b ≈ 35, m ≈ 100 
▪ Exact solution is completely infeasible 
▪ But, do we need to explore the whole tree?
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Game Tree Pruning
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✦ Key idea: give up on paths when you realize that they are worse 
than options you’ve already explore. 

✦ Track the maximum score that the minimizing player (beta) can get

✦ Track the minimum score that the maximizing player (alpha) can 
get

✦ Whenever the maximum score that beta can get becomes less than 
the minimum score that alpha can get, the maximizing player can 
stop searching down this path, because it will never be reached.

Pruning



Minimax	Example

Image from www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-4-alpha-beta-pruning



Alpha-Beta Pruning
▪ General configuration (MIN version) 
▪ We’re computing the MIN-VALUE at some 

node n 
▪ We’re looping over n’s children 
▪ n’s estimate of the childrens’ min is dropping 
▪ Who cares about n’s value?  MAX 
▪ Let a be the best value that MAX can get at 

any choice point along the current path from 
the root 

▪ If n becomes worse than a, MAX will avoid it, 
so we can stop considering n’s other children 
(it’s already bad enough that it won’t be 
played) 

▪ MAX version is symmetric

MAX

MIN

MAX

MIN

a

n
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Alpha-Beta Implementation

def min-value(state, α, β): 
initialize v = +∞ 
for each successor of state: 

v = min(v, 
value(successor, α, β)) 

if v ≤ α return v 
β = min(β, v) 

return v

def max-value(state, α, β): 
initialize v = -∞ 
for each successor of 

state: 
v = max(v, 

value(successor, α, 
β)) 

if v ≥ β return v 
α = max(α, v) 

return v

α: MAX’s best option on path to root 
β: MIN’s best option on path to root
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Alpha-Beta Pruning Properties

▪ This pruning has no effect on minimax value computed for 
the root! 

▪ Values of intermediate nodes might be wrong 
▪ Important: children of the root may have the wrong value 
▪ So the most naïve version won’t let you do action selection 

▪ Good child ordering improves effectiveness of pruning 

▪ With “perfect ordering”: 
▪ Time complexity drops to O(bm/2) 
▪ Doubles solvable depth! 
▪ Full search of, e.g. chess, is still hopeless… 

▪ This is a simple example of metareasoning (computing 
about what to compute)

10 10 0

max

min
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Alpha-Beta Quiz
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Resource Limits

▪ Problem: In realistic games, cannot search to 
leaves! 

▪ Solution: Depth-limited search 
▪ Instead, search only to a limited depth in the tree 
▪ Replace terminal utilities with an evaluation 

function for non-terminal positions 

▪ Example: 
▪ Suppose we have 100 seconds, can explore 10K 

nodes / sec 
▪ So can check 1M nodes per move 
▪ α-β reaches about depth 8 – decent chess program 

▪ Guarantee of optimal play is gone 

▪ More plies makes a BIG difference 

▪ Use iterative deepening for an anytime 
algorithm

? ? ? ?

-1 -2 4 9

4

min

max

-2 4
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Video of Demo Thrashing (d=2)
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Why Pacman Starves

▪ A danger of replanning agents! 
▪ He knows his score will go up by eating the dot now (west, east) 
▪ He knows his score will go up just as much by eating the dot 

later (east, west) 
▪ There are no point-scoring opportunities after eating the dot 

(within the horizon, two here) 
▪ Therefore, waiting seems just as good as eating: he may go east, 

then back west in the next round of replanning!
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Video of Demo Thrashing - Fixed (d=2)

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley



Evaluation	Functions



Evaluation Functions

▪ Evaluation functions score non-terminals in depth-limited search 

▪ Ideal function: returns the actual minimax value of the position 
▪ In practice: typically weighted linear sum of features: 

▪ e.g.  f1(s) = (num white queens – num black queens), etc.
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Evaluation for Pacman
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Video of Demo Smart Ghosts (Coordination)
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Video of Demo Smart Ghosts (Coordination) – Zoomed In
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Depth Matters
▪ Evaluation functions are always imperfect 
▪ The deeper in the tree the evaluation function is 

buried, the less the quality of the evaluation 
function matters 

▪ An important example of the tradeoff between 
complexity of features and complexity of 
computation
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Video of Demo Limited Depth (2)
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Video of Demo Limited Depth (10)
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Synergies between Evaluation Function and Alpha-Beta?

▪ Alpha-Beta: amount of pruning depends on expansion ordering 
▪ Evaluation function can provide guidance to expand most 

promising nodes first (which later makes it more likely there is 
already a good alternative on the path to the root) 
▪ (somewhat similar to role of A* heuristic) 

▪ Alpha-Beta:  (similar for roles of min-max swapped) 
▪ Value at a min-node will only keep going down 
▪ Once value of min-node lower than better option for max along 

path to root, can prune 
▪ Hence: IF evaluation function provides upper-bound on value at 

min-node, and upper-bound already lower than better option for 
max along path to root  
THEN can prune
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