
Prof. Carolyn Anderson
Wellesley College

CS	232:		
Arti+icial	Intelligence Fall	2023

Recap

Search
We’ve seen two kinds of search strategies so far:

✦ Uninformed search
- Breadth-first search
- Depth-first search

✦ Informed search
- Uniform cost search
- A* search

Annotatenodes w costfrom
start 1Node

Priority Queue
Here.si

tmisticFCNodeGrNode tACNode
I

start Node NoEGoal

Slides adapted from Chris Callison-Burch

i
start

find gro then

fisibio gisibiosthesibio
T T

costdistance guessofcost

fromAradoSibiu fromSibiu Budanes

distancebetween
40 253 Sisto Bucharest

Slides adapted from Chris Callison-Burch

ordeggy
Start

Fagtian see
413

inArad646
F o RimiOradea 671
415 671 413

Slides adapted from Chris Callison-Burch

ordergy
Fagavas 415 Start

f
Pitesti417

nCraiouea326
dFqoq.R.mg

AiI6483
41 671 413 SiOradea 671

aai Pit 553

526

Slides adapted from Chris Callison-Burch

ordergy Pitesti417
Start

f
Bucharest450 1 yCraiouea326

dFqoq.R.mgSibiu 553

A i q9 4151 6711413 Sig
Oradea 671 Gg Pit 553

591 Bohai
450

Slides adapted from Chris Callison-Burch

ordered'T Bucharest418 Start

f
Bucharest450 1 yCraiouea326

dFqoq.R.mgSibiu 553

553

Sibiu 591

wriggioviter
4151 914137 s

Craiova615 Aai Pit
Oradea67

591 t
go450

i ittGai
607

Slides adapted from Chris Callison-Burch

ordered'T Bucharest418 Start

f
Bucharest450 1 yCraiouea326

dFqoq.R.mgSibiu 553

553

Sibiu 591

wriggioviter
4151 914137 s

Craiova615 Aai Pit
Oradea67

591 t
go450

i ittGai
607

Slides adapted from Chris Callison-Burch

Slides adapted from Chris Callison-Burch

Adversarial	Search

So far, we have only considered one-player games.

What happens when we add another player?

Search

Multiplayer	Games
In competitive multiplayer games, we have to consider
our opponent’s possible actions, as well as our own.

We call this adversarial search.

Game Playing State-of-the-Art
▪ Checkers: 1950: First computer player.

1994: First computer champion:
Chinook ended 40-year-reign of human
champion Marion Tinsley using
complete 8-piece endgame. 2007:
Checkers solved!

▪ Chess: 1997: Deep Blue defeats human
champion Gary Kasparov in a six-game
match. Deep Blue examined 200M
positions per second, used very
sophisticated evaluation and
undisclosed methods for extending
some lines of search up to 40 ply.
Current programs are even better, if
less historic.

▪ Go: 2016: Alpha GO defeats human
champion. Uses Monte Carlo Tree
Search + neural network to learn
evaluation function.

▪ Go + Chess + Shogi: 2017: Alpha Zero
learns all 3 games using
reinforcement learning to play
against itself.

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

▪ Many different kinds of games!

▪ Axes:
▪ Deterministic or stochastic?
▪ One, two, or more players?
▪ Zero sum?
▪ Perfect information (can you see the state)?

▪ Want algorithms for calculating a strategy (policy)
which recommends a move from each state

Types of Games

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Deterministic Games

▪ Many possible formalizations, one is:
▪ States: S (start at s0)
▪ Players: P={1...N} (usually take turns)
▪ Actions: A (may depend on player / state)
▪ Transition Function: SxA → S
▪ Terminal Test: S → {t,f}
▪ Terminal Utilities: SxP → R

▪ Solution for a player is a policy: S → A

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Zero-Sum Games

▪ Zero-Sum Games
▪ Agents have opposite utilities

(values on outcomes)
▪ Lets us think of a single value

that one maximizes and the
other minimizes

▪ Adversarial, pure competition

▪ General Games
▪ Agents have independent

utilities (values on outcomes)
▪ Cooperation, indifference,

competition, and more are all
possible

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Adversarial Search

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Single-Agent Trees

8

2 0 2 6 4 6… …

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Value of a State

8

2 0 2 6 4 6… …

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Adversarial Game Trees

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Minimax Values

+8-10-5-8

States Under Agent’s Control: States Under Opponent’s Control:

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Tic-Tac-Toe Game Tree

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Adversarial Search (Minimax)

▪ Deterministic, zero-sum games:
▪ Tic-tac-toe, chess, checkers
▪ One player maximizes result
▪ The other minimizes result

▪ Minimax search:
▪ A state-space search tree
▪ Players alternate turns
▪ Compute each node’s minimax

value: the best achievable
utility against a rational
(optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of

state:
v = min(v, max-

value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of

state:
v = max(v, min-

value(successor))
return v

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the

state’s utility
if the next agent is MAX: return max-

value(state)
if the next agent is MIN: return min-

value(state)

def min-value(state):
initialize v = +∞
for each successor of

state:
v = min(v,

value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of

state:
v = max(v,

value(successor))
return v

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Minimax Example

12 8 5 23 2 144 6

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Which nodes are which nodes are

order Max's control
Under Min's
control

Minimax Properties

Optimal against a perfect player. Otherwise?

10 10 9 100

max

min

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Video of Demo Min vs. Exp (Min)

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Video of Demo Min vs. Exp (Exp)

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Another	Demo

http://web.mit.edu/dxh/www/adverse/index.html#

Minimax	Summary
✦ Rank final game states by their final scores (for tic-

tac-toe or chess: win, draw, loss).

✦ Rank intermediate game states by whose turn it is
and the available moves.
- If it's X's turn, set the rank to that of the maximum

move available. If a move will result in a win, X
should take it.

- If it's O's turn, set the rank to that of the minimum
move available. If a move will result in a loss, X
should avoid it.

Ef+iciency

Minimax Efficiency

▪ How efficient is minimax?
▪ Just like (exhaustive) DFS
▪ Time: O(bm)
▪ Space: O(bm)

▪ Example: For chess, b ≈ 35, m ≈ 100
▪ Exact solution is completely infeasible
▪ But, do we need to explore the whole tree?

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Game Tree Pruning

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

✦ Key idea: give up on paths when you realize that they are worse
than options you’ve already explore.

✦ Track the maximum score that the minimizing player (beta) can get

✦ Track the minimum score that the maximizing player (alpha) can
get

✦ Whenever the maximum score that beta can get becomes less than
the minimum score that alpha can get, the maximizing player can
stop searching down this path, because it will never be reached.

Pruning

Minimax	Example

Image from www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-4-alpha-beta-pruning

Alpha-Beta Pruning
▪ General configuration (MIN version)
▪ We’re computing the MIN-VALUE at some

node n
▪ We’re looping over n’s children
▪ n’s estimate of the childrens’ min is dropping
▪ Who cares about n’s value? MAX
▪ Let a be the best value that MAX can get at

any choice point along the current path from
the root

▪ If n becomes worse than a, MAX will avoid it,
so we can stop considering n’s other children
(it’s already bad enough that it won’t be
played)

▪ MAX version is symmetric

MAX

MIN

MAX

MIN

a

n

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Alpha-Beta Implementation

def min-value(state, α, β):
initialize v = +∞
for each successor of state:

v = min(v,
value(successor, α, β))

if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of

state:
v = max(v,

value(successor, α,
β))

if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Alpha-Beta Pruning Properties

▪ This pruning has no effect on minimax value computed for
the root!

▪ Values of intermediate nodes might be wrong
▪ Important: children of the root may have the wrong value
▪ So the most naïve version won’t let you do action selection

▪ Good child ordering improves effectiveness of pruning

▪ With “perfect ordering”:
▪ Time complexity drops to O(bm/2)
▪ Doubles solvable depth!
▪ Full search of, e.g. chess, is still hopeless…

▪ This is a simple example of metareasoning (computing
about what to compute)

10 10 0

max

min

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Alpha-Beta Quiz

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Resource Limits

▪ Problem: In realistic games, cannot search to
leaves!

▪ Solution: Depth-limited search
▪ Instead, search only to a limited depth in the tree
▪ Replace terminal utilities with an evaluation

function for non-terminal positions

▪ Example:
▪ Suppose we have 100 seconds, can explore 10K

nodes / sec
▪ So can check 1M nodes per move
▪ α-β reaches about depth 8 – decent chess program

▪ Guarantee of optimal play is gone

▪ More plies makes a BIG difference

▪ Use iterative deepening for an anytime
algorithm

? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Video of Demo Thrashing (d=2)

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Why Pacman Starves

▪ A danger of replanning agents!
▪ He knows his score will go up by eating the dot now (west, east)
▪ He knows his score will go up just as much by eating the dot

later (east, west)
▪ There are no point-scoring opportunities after eating the dot

(within the horizon, two here)
▪ Therefore, waiting seems just as good as eating: he may go east,

then back west in the next round of replanning!

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Video of Demo Thrashing - Fixed (d=2)

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Evaluation	Functions

Evaluation Functions

▪ Evaluation functions score non-terminals in depth-limited search

▪ Ideal function: returns the actual minimax value of the position
▪ In practice: typically weighted linear sum of features:

▪ e.g. f1(s) = (num white queens – num black queens), etc.

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Evaluation for Pacman

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Video of Demo Smart Ghosts (Coordination)

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Video of Demo Smart Ghosts (Coordination) – Zoomed In

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Depth Matters
▪ Evaluation functions are always imperfect
▪ The deeper in the tree the evaluation function is

buried, the less the quality of the evaluation
function matters

▪ An important example of the tradeoff between
complexity of features and complexity of
computation

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Video of Demo Limited Depth (2)

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Video of Demo Limited Depth (10)

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Synergies between Evaluation Function and Alpha-Beta?

▪ Alpha-Beta: amount of pruning depends on expansion ordering
▪ Evaluation function can provide guidance to expand most

promising nodes first (which later makes it more likely there is
already a good alternative on the path to the root)
▪ (somewhat similar to role of A* heuristic)

▪ Alpha-Beta: (similar for roles of min-max swapped)
▪ Value at a min-node will only keep going down
▪ Once value of min-node lower than better option for max along

path to root, can prune
▪ Hence: IF evaluation function provides upper-bound on value at

min-node, and upper-bound already lower than better option for
max along path to root
THEN can prune

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

