
Prof. Carolyn Anderson
Wellesley College

CS	232:		
Arti+icial	Intelligence Fall	2023

Recap

Slides adapted from Chris Callison-Burch

Slides adapted from Chris Callison-Burch

Uh([s0,a0,s1,a1,…, sn]) =

 R(s0,a0,s1) + R(s1,a1,s2) + … + R(sn-1, an-1,sn)

Slides adapted from Chris Callison-Burch

Finite horizon similar to depthlimitedsearch

Discounting use O y
1

smaller g means smallerhorizon
U Cro re ÉorthERMA y

Terminal
Absorbing state

Slides adapted from Chris Callison-Burch

proffitigd fun
tin notation

Q-values

Slides adapted from Chris Callison-Burch

A q-state is a pair of a state and an action.

Q-values

Slides adapted from Chris Callison-Burch

Slides adapted from Chris Callison-Burch

0.5 0.5

000

Slides adapted from Chris Callison-Burch

s i expected utility starting
in s and acting optimally

Is a ee tedutility
starting out having taken action

a

from state s acting optimally
afterwards

To s optimal action from
state s

Slides adapted from Chris Callison-Burch

Recursive definitions

V Frs MEQ Is
a

Q Is a g Trs a s Rfs a 5 YVES'D

Is MaxgTcs
a s Ris as gV s

Slides adapted from Chris Callison-Burch

Slides adapted from Chris Callison-Burch

Reinforcement	Learning
Exploitation Versus Exploration

https://www.youtube.com/watch?v=jwSbzNHGflM

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

New	Scenario:	Unknown	States	and	Rewards

Which of these slot machines should we play?

Let’s play a while and find out!

Bet: Reward: Bet: Reward:
$1

$0
$1
$1
$0 $0.8

$0.8

$0.8
$0.8
$0.8

$0

$0
$2
$0
$0 $0.8

$0.8

$0.8
$0.8
$0.8

3 5 9

What Did We Learn?

First of all, gambling is a bad idea.

Second, it looks like Slot A has slightly better rewards.

What Did We Learn?

Wait, why are there more pulls for Slot A?

Our player favored previously successful actions.
But some percent of the time, our player picked
randomly to gain experience with all the slots.

What Just Happened?

▪ That wasn’t planning, it was learning!
▪ Specifically, reinforcement learning
▪ There was an MDP, but you couldn’t solve it with just computation
▪ You needed to actually act to figure it out

▪ Important ideas in reinforcement learning that came up
▪ Exploration: you have to try unknown actions to get information
▪ Exploitation: eventually, you have to use what you know
▪ Regret: even if you learn intelligently, you make mistakes
▪ Sampling: because of chance, you have to try things repeatedly
▪ Difficulty: learning can be much harder than solving a known MDP

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Reinforcement Learning

▪ Still assume a Markov decision process (MDP):
▪ A set of states s ∈ S
▪ A set of actions (per state) A
▪ A model T(s,a,s’)
▪ A reward function R(s,a,s’)

▪ Still looking for a policy π(s)

▪ New twist: don’t know T or R
▪ I.e. we don’t know which states are good or what the actions do
▪ Must actually try actions and states out to learn

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Reinforcement Learning

▪ Basic idea:
▪ Receive feedback in the form of rewards
▪ Agent’s utility is defined by the reward function
▪ Must (learn to) act so as to maximize expected rewards
▪ All learning is based on observed samples of outcomes!

Environment

Agent
Actions:

a

State: s
Reward: r

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Example: Learning to Walk

Initial A Learning Trial After Learning
[1K Trials]

[Kohl and Stone, ICRA 2004]

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Example: Learning to Walk

Initial [Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Example: Learning to Walk

Training [Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Example: Learning to Walk

Finished [Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Video of Demo Crawler Bot

Offline (MDPs) vs. Online (RL)

Offline
Solution

Online
Learning

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Passive Reinforcement Learning

▪ Simplified task: policy evaluation
▪ Input: a fixed policy π(s)
▪ You don’t know the transitions T(s,a,s’)
▪ You don’t know the rewards R(s,a,s’)
▪ Goal: learn the state values

▪ In this case:
▪ Learner is “along for the ride”
▪ No choice about what actions to take
▪ Just execute the policy and learn from experience
▪ This is NOT offline planning! You actually take actions in

the world.

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Direct Evaluation

▪ Goal: Compute values for each state under π

▪ Idea: Average together observed sample values
▪ Act according to π
▪ Every time you visit a state, write down what the sum of

discounted rewards turned out to be
▪ Average those samples

▪ This is called direct evaluation

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Example: Direct Evaluation

Be leg 1 810 E 1 8 14810 E ltg.lt
c 814810 C 1 810

c leg
8 10

0

8 9 10 89 10 9 10 11

8 42

Assume 8 1

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

088

Problems with Direct Evaluation

▪ What’s good about direct evaluation?
▪ It’s easy to understand
▪ It doesn’t require any knowledge of T, R
▪ It eventually computes the correct

average values, using just sample
transitions

▪ What bad about it?
▪ It wastes information about state

connections
▪ Each state must be learned separately
▪ So, it takes a long time to learn

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Temporal	Difference	
Learning

Temporal Difference Learning

▪ Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)
▪ Likely outcomes s’ will contribute updates more often

▪ Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!
▪ Move values toward value of whatever successor occurs: running

average

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Temporal Difference Learning

▪ Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)
▪ Likely outcomes s’ will contribute updates more often

▪ Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!
▪ Move values toward value of whatever successor occurs: running

average

Sample of V(s):
Update to V(s):

Same update:
Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Exponential Moving Average

▪ Exponential moving average
▪ The running interpolation update:

▪ Makes recent samples more important:

▪ Forgets about the past (distant past values were wrong anyway)

▪ Decreasing learning rate (alpha) can give converging averages

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

S learning rate

Example: Temporal Difference Learning

Assume:

γ = 1,

α = 1/2

Observed Transitions

B, east, C, -2 C, east, D, -2

A
B C D

E

States

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

0

0 0 8

0

Example: Temporal Difference Learning

Assume:

γ = 1,

α = 1/2

Observed Transition: B, east, C, -2

A
B C D

E

States

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

0

0 0 8

0
at

VFB C1 0.570 0.51 2 107
0.5.0 0.56 2
1

Example: Temporal Difference Learning

Assume:

γ = 1,

α = 1/2

Observed Transition:

A
B C D

E

States

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

0

0 0 8

0

C, east, D, -2

0.5103 0.51 2 83
3

Example: Temporal Difference Learning

Assume:

γ = 1,

α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A
B C D

E

States

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Problems with TD Value Learning

▪ TD value leaning is a model-free way to do policy evaluation

▪ However, if we want to turn values into a (new) policy, we’re sunk:

▪ Idea: learn Q-values, not values

▪ Makes action selection model-free too!

a
s

s, a

s,a,s’
s’

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Q-Learning

▪ Q-Learning: sample-based Q-value iteration

▪ Learn Q(s,a) values as you go
▪ Receive a sample (s,a,s’,r)
▪ Consider your old estimate:
▪ Consider your new sample estimate:

▪ Incorporate the new estimate into a running average:

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Video of Demo Q-Learning -- Crawler

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

▪ This is called off-policy learning

▪ Caveats:
▪ You have to explore enough
▪ You have to eventually make the learning rate
 small enough
▪ … but not decrease it too quickly
▪ Basically, in the limit, it doesn’t matter how you select actions (!)

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Exploration vs. Exploitation

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

How to Explore?

Several schemes for forcing exploration
Simplest: random actions (ε-greedy)

Every time step, flip a coin
With (small) probability ε, act randomly
With (large) probability 1-ε, act on current policy

Problems with random actions?
You do eventually explore the space, but keep

thrashing around once learning is done
One solution: lower ε over time
Another solution: exploration functions

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Exploration Functions
When to explore?

Random actions: explore a fixed amount
Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function
Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g.

Note: this propagates the “bonus” back to states that lead to unknown states as
well!

Modified Q-Update:

Regular Q-Update:

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Regret

Even if you learn the optimal policy,
you still make mistakes along the way!
Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards
Minimizing regret goes beyond
learning to be optimal – it requires
optimally learning to be optimal
Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Mnih et al. 2015

https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf

