CS 232:

Fall 2023
Artificial Intelligence a

Prof. Carolyn Anderson
Wellesley College

Recap

Discounting

How to discount?

- Each time we descend a level, we
multiply in the discount once

Why discount?

« Sooner rewards probably do have
higher utility than later rewards

« Also helps our algorithms converge

Slides adapted from Chris Callison-Burch

Sequences of Rewards

The performance of an agent in an MDP is the sum
of the rewards for the transitions it takes. r>0

T
3 - G
Uh([so0,a0,51,a1,..., Sn]) = 4'}’ "}’ <$'> -

R(so,a0,51) + R(s1,a1,S2) + ... + R(Sn-1, a@n-1,Sn)

Slides adapted from Chris Callison-Burch

Infinite Utilities?!

*Problem: What if the game lasts forever? Do we get infinite
rewards?

— Foite porizon (smiler T Apn-Usreet.S2acety |

— (urh - £ 1
DiScound e U O ¢ (
ST 6 WARS SVW°([er Novizan

OLf0... (o) é R "y, = R/ (1 D

o

Tew
(evmivia / Rusor bvt) SFate

Slides adapted from Chris Callison-Burch

Recap: Defining MDPs

Markov decision processes: m ot
* Set of states S N SAY ooy
{ N
Start state s, Ve fun
SetofactionsA ¢ /
Transitions P(s’|s,a) (or T(s,a,s"))
Rewards R(s,a,s’) (and discount y)

MDP quantities so far:
* Policy = Choice of action for each state
« Utility = sum of (discounted) rewards

Slides adapted from Chris Callison-Burch

Q-values

Q-values

A g-state is a pair of a state and an action.

s is a state
(s, a) is a g-state

(s,a,s’) is called a transition
T(s,a,s’) = P(s’|s,a)
R(s,a,s’)

Slides adapted from Chris Callison-Burch

Example Hyperdrive MDP

The Millennium Falcon needs to travel far far away, quickly
Three states: Cruising, Hyperspace, Crashed
Two actions: Maintain speed, Punch it

Punch It
Going faster gets double reward unc

Hyperspace

Punch It 0.5

Cruising 0.5

Crashed

Slides adapted from Chris Callison-Burch

Hyperdrive Search Tree

B9

Slides adapted from Chris Callison-Burch

Optimal Quantities

« , A, s sisa
() souis i steng
(W y AWy | %M Oﬂh\m j "
The value (utility) of a g-state (s,a): - s_'sic),;a

O¥ (5,207 en ded ity
shortv) gk pawv TalRe adion e y
‘HWV\ SWete g § ac@/y] (;?[—;Wa((»l e >

(s,a,s’) is a

J
)
¢ transition
‘_,,—"// S

TE[s)= oyﬁ'm&l Schm Yo
Shett s

Slides adapted from Chris Callison-Burch

Values of States
Fundamental operation: compute the (expectimax) value of a
state

» Expected utility under optimal action
» Average sum of (discounted) rewards

ReonsVNe cefvitons :
N <(s): wm& (5,2)

0¥ (<) = %T(S/BJSB[Q(SJ%SN N*(s’)]
%(3),, W X ﬁT(s& S)[Q(S)Q 5) 6\{ (5)]

Slides adapted from Chris Callison-Burch

Slides adapted from Chris Callison-Burch

Computing Actions from Q-Values

VA%
S

PPDC

Important lesson: actions are easier to select from g-values
than values!

Let's imagine we have the optimal g-value

How should we act?
« Completely trivial to decide!

7*(s) = arg max Q*(s,a)

Slides adapted from Chris Callison-Burch

Reinforcement Learning

Exploit SKiony Nersvs Exploretion

https://www.youtube.com/watch?v=jwSbzNHGflM

Offline Planning

= Solving MDPs is offline planning

® You determine all quantities through computation
®" You need to know the details of the MDP
= You do not actually play the game!

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

New Scenario: Unknown States and Rewards

¢

Which of these slot machines should we play?

Let’s play a while and find out!

Pet:

$0.8
$0.8
$0.8
$0.8
$0.8

Reward:

$1
$0
$1
$1
$0

Pet:

$0.8
$0.8
$0.8
$0.8
$0.8

Reward:

$0
$0
$0
$2
$0

75

What Did We Learn?

First of all, gambling is a bad idea.

Second, it looks like Slot A has slightly better rewards.

Posterior Distribution

Hits Misses |Total Pulls
Black bar is the bandit's actual probability of success

/ \ 18 (19%) 76 94

0O 01 02 03 04 05 06 07 08 09 1

/\ 17 (17%) 86 103

0O 01 02 03 04 05 06 07 08 09 1

What Did We Learn?

Wait, why are there more pulls for Slot A?

Our player favored previously successful actions.

But some percent of the time, our player picked
randomly to gain experience with all the slots.

Posterior Distribution

Hits Misses |Total Pulls
Black bar is the bandit's actual probability of success
/I\ 18 (19%) 76 94
0O 01 02 03 04 05 06 07 08 09 1
/I\ 17 (17%) 86 103

0O 01 02 03 04 05 06 07 08 0.9

1

What Just Happened?

= That wasn’t planning, it was learning!
» Specifically, reinforcement learning
= There was an MDP, but you couldn’t solve it with just computation
= You needed to actually act to figure it out

= Important ideas in reinforcement learning that came up

» Exploration: you have to try unknown actions to get information
Exploitation: eventually, you have to use what you know
Regret: even if you learn intelligently, you make mistakes
Sampling: because of chance, you have to try things repeatedly
Difficulty: learning can be much harder than solving a known MDP

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Reinforcement Learning

» Still assume a Markov decision process (MDP):
» Aset of statess €S
= Aset of actions (per state) A
= Amodel T(s,a,s’)
= A reward function R(s,a,s’)

= Still looking for a policy mt(s)

= New twist: don’t know T or R
= |.e. we don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Reinforcement Learning

= Basic idea:
» Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!

Actions:
a
/ Agent\
State: s
Reward: r
Environment

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

ExamEIe: Learning to Walk

Initial A Learning Trial After Learning
[1K Trials]

[Kohl and Stone, ICRA 2004]

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Example: Learning to Walk

[Kohl and Stone, ICRA 2004] Initial [Video: AIBO WALK — initial]

Slides created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley

Example: Learning to Walk

[Kohl and Stone, ICRA 2004] Ir alnlng [Video: AIBO WALK - training]

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Example: Learning to Walk

[Kohl and Stone, ICRA 2004] Finished [Video: AIBO WALK - finished]

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Video of Demo Crawler Bot

BT e ——_—_——)|
Run Skip 1000000 step | Stop | Skip 30000 steps] Reset speed counter “ ResetQ |
average speed 2.311914863606509
eps-—- eps++ | gam- ’ ‘ gam++ alpha-—- alpha++ |

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Offline (MDPs) vs. Online (RL)

Offline Online
Solution Learning

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Passive Reinforcement Learning

= Simplified task: policy evaluation
» Input: a fixed policy n(s)

You don’t know the transitions T(s,a,s’)

You don’t know the rewards R(s,a,s’)

Goal: learn the state values

= |[n this case:
= Learner is “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience

= This is NOT offline planning! You actually take actions in
the world.

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Direct Evaluation

» Goal: Compute values for each state under &t

» |dea: Average together observed sample values
» Act according to «

= Every time you visit a state, write down what the sum of
discounted rewards turned out to be

= Average those samples

= This is called direct evaluation

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Example: Direct Evaluation

Input Policy @ Observed Episodes (Training) Output Values
Episode 1 Episode 2
B, east, C, -1 B, east, C, -1
C, east, D, -1 C east, D, -1
D, exit, x, +10 D, exit, x, +10
Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
C,east, D, -1 C, east, A, -1
Assume:y =1 D, exit, x, +10 A, exit, x,-10

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Example: Direct Evaluation

Episode 1 Episode 2 Episode 3 Episode 4

B, east, C, -1 B, east, C, -1 E, north, C, -1 E, north, C, -1
C,east, D, -1 C, east, D, -1 C,east, D, -1 C,east, A -1
D, exit, x, +10 D, exit, x, +10 D, exit, x, +10 A, exit, x,-10

E:'*K‘Hg'o E - —\+6~H
C:_\.&—Xl Q"'O

C - (-*640

Example: Direct Evaluation

Input Policy @ Observed Episodes (Training) Output Values
Episode 1 Episode 2
B, east, C, -1 B, east, C, -1
C, east, D, -1 C east, D, -1
D, exit, x, +10 D, exit, x, +10
Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
C,east, D, -1 C, east, A, -1
Assume:y =1 D, exit, x, +10 A, exit, x,-10

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Problems with Direct Evaluation

= What’s good about direct evaluation?
= |t’s easy to understand
= |t doesn’t require any knowledge of T, R Qutput Values

= |t eventually computes the correct
average values, using just sample
transitions

= What bad about it?
s |t wastes information about state

connections
» Each state must be learned separately If B and E both go to C
= 50, it takes a long time to learn under this policy, how can

their values be different?

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Temporal Difference
Learning

Temporal Difference Learning

= Big idea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’,)
= Likely outcomes s’ will contribute updates more often

= Temporal difference learning of values

= Policy still fixed, still doing evaluation!

= Move values toward value of whatever successor occurs: running
average

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Temporal Difference Learning

= Big idea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’,)
= Likely outcomes s’ will contribute updates more often

= Temporal difference learning of values

= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running

average
Sample of V(s): sample = R(s,m(s),s) +~V7(s")
Update to V(s): VTi(s) + (1 —a)V"(s) ¥+ (a)sample
Same update: V7(s) < V™ (s) + a(sample — V" (s))

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Exponential Moving Average

= Exponential moving average
= The running interpolation update:

= Makes recent samples more important: z,=(1—«) -Z,-1+a- -z,

Tp+(1—a) Tp1+1—a)? Tpo+...
1+ (1—a)+(1—-—a)2+...

Ty =
= Forgets about the past (distant past values were wrong anyway)

» Decreasing learning rate (alpha) can give converging averages

A = 22 vting (ef¢.

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Example: Temporal Difference Learning

States

Observed Transitions

[B, east, C, -2] [C, east, D, -2]

VT(s) + (1 = a)V7(s) + o |[R(s,7(s),8) + V(5]

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Example: Temporal Difference Learning

States

Observed Transition: [B, east, C, -2]

VT(s) «— (1 —a)V"(s) + o [R(s,ﬂ'(s), s + 'va(s’)}

V(8) <= (1-090 + 05]-21 10T

« =050 + 0.5(-2)
& -4

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Example: Temporal Difference Learning

States Observed Transition: [C, east, D; -2]

0
0 Dol 8
0

Assume: V() +— (1 —a)V™(s) + « [R(S, 7w(s),s’) + ’)/VW(S,)}
=1
aY=1/2 — 05[o]+ O«SE—Z&%Z

< 3

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Example: Temporal Difference Learning

States Observed Transitions

[B, east, C, -2] [C, east, D, -2]

B|CID||loJols] 1-100[s] 11308
0 0 0

y=1 VT(s) + (1 = a)V7(s) + o |[R(s,7(s),8) + V(5]

Problems with TD Value Learning

= TD value leaning is a model-free way to do policy evaluation

= However, if we want to turn values into a (new) policy, we're sunk:

w(s) = argmax Q(s,a)

Q(s,a) = > T(s,a, s {1{(3, a,s) +~ \(s’)}
s’

= Idea: learn Q-values, not values

= Makes action selection model-free too!

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Q-Learning

» Q-Learning: sample-based Q-value iteration

Qt1(s:0) « S T(s,a,8) |R(s,a,8) + 7 maxQu(s'sa)

= Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)
= Consider your old estimate:
= Consider your new sample estimate:

Q(s,a)

LOE
= Incorporate the new estimate into a runnin AAA
P |
Qs,0) — (1 —)Q(s,a) + (o) [sample] =S ..\

PP

Q-VALUES AFTER 1000 EPISODES

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Video of Demo Q-Learning -- Crawler

L=, Applet - ;_um_x J

fRuni| Skip 1000000 step | Stop || Skip 30000 steps i Reset speed counter I ResetQ] —
I [Pydev | &° Team ”

=0

8

average speed - 1.7666772684134646

o=
=3

G A ey 2M

9/25/2012

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

= This is called off-policy learning

= Caveats:
= You have to explore enough
= You have to eventually make the learning rate
small enough ——
= ... but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Exploration vs. Exploitation

b7 7

ND
GKP‘\.;NG'.‘

L 70
TP
=

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

How to Explore?

Several schemes for forcing exploration

Simplest: random actions (e-greedy)
Every time step, flip a coin
With (small) probability €, act randomly
With (large) probability 1-g, act on current policy

Problems with random actions?

You do eventually explore the space, but keep
thrashing around once learning is done

One solution: lower € over time
Another solution: exploration functions

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Exploration Functions

When to explore?
Random actions: explore a fixed amount

Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function

Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.8. f(u,n) = u + k/n

Regular Q-Update: Q(s,a) o R(s,a,s") +ymaxQ(s’,d)
Modified Q-Update: Q(s,a) o R(s,a,s") 4+~ max f(Q(s',a"), N(s',a"))

Note: this propagates the “bonus” back to states that lead to unknown states as
well!

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Regret

Even if you learn the optimal policy,
you still make mistakes along the way

Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

Minimizing regret goes beyond
learning to be optimal — it requires
optimally learning to be optimal

Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley

Video Pinball |
Boxing |
Breakout |

Star Gunner |
Robotank |
Atlantis |

Crazy Climber |
Gopher |

Demon Attack |
Name This Game |
Krull ']

Assault |

Road Runner |
Kangaroo |
James Bond |
Tennis |

Pong |

Space Invaders |
Beam Rider |
Tutankham |
Kung-Fu Master |
Freeway |

Time Pilot |
Enduro |

Fishing Derby |
Up and Down |
Ice Hockey |
Q*bert |
H.E.R.O. "]
Asterix |

Battle Zone |
Wizard of Wor |
Chopper Command |
Centipede |
Bank Heist |
River Raid |
Zaxxon |

Amidar |

Alien |

Venture |
Seaquest |
Double Dunk |
Bowling |

Ms. Pac-Man |
Asteroids |
Frostbite |
Gravitar |

Private Eye |
Montezuma's Revenge ||o0%

\

At human-level or above

Below human-level

_T,gmlq!mllllll!““"““““lm

-

7%

—
=
X

-

5%

I
N
B

Best linear learner

))
I I I I I [|

Mnih et al. 2015 100 200 300 400 500 600 1,000 4,500%

o —

https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf

