CS 232: Artificial Intelligence Fall 2023

Prof. Carolyn Anderson Wellesley College

Discounting

How to discount?

• Each time we descend a level, we multiply in the discount once

Why discount?

- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge

Sequences of Rewards

The performance of an agent in an MDP is the sum of the rewards for the transitions it takes.

r > 0

 $Uh([s_0,a_0,s_1,a_1,...,s_n]) =$

 $R(s_0,a_0,s_1) + R(s_1,a_1,s_2) + ... + R(s_{n-1},a_{n-1},s_n)$

Slides adapted from Chris Callison-Burch

Infinite Utilities?!

Problem: What if the game lasts forever? Do we get infinite rewards?

- Frite Norizon (similar to depth-limited search)

Slides adapted from Chris Callison-Burch

Recap: Defining MDPs

Markov decision processes:

- Set of states S
 Start state s₀
 Set of actions A
- Transitions P(s'|s,a) (or T(s,a,s'))
- Rewards R(s,a,s') (and discount γ)

MDP quantities so far:

- Policy = Choice of action for each state
- Utility = sum of (discounted) rewards

Q-values

A q-state is a pair of a state and an action.

Example Hyperdrive MDP

Slides adapted from Chris Callison-Burch

Slides adapted from Chris Callison-Burch

Optimal Quantities

The value (utility) of a state s:

s is a state (s, a) is a q-state (s,a,s') is a transition

The optimal policy:

Values of States

Fundamental operation: compute the (expectimax) value of a state

- Expected utility under optimal action
- Average sum of (discounted) rewards

Slides adapted from Chris Callison-Burch

Computing Actions from Q-Values

Let's imagine we have the optimal q-value

How should we act?

• Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$

Important lesson: actions are easier to select from q-values than values!

Reinforcement Learning

Exploitation Versus Exploration

Offline Planning

Solving MDPs is offline planning

- You determine all quantities through computation
- You need to know the details of the MDP
- You do not actually play the game!

New Scenario: Unknown States and Rewards

Which of these slot machines should we play?

Let's play a while and find out!

21-	Bet:	Reward:	Bet:	Reward	l:
\$ 75	\$0.8	\$1	\$0.8	\$0	\$ 2/5
	\$0.8	\$0	\$0.8	\$0	- 1
	\$0.8	\$1	\$0.8	\$0	
	\$0.8	\$1	\$0.8	\$2	
	\$0.8	\$0	\$0.8	\$0	

What Did We Learn?

First of all, gambling is a bad idea.

Second, it looks like Slot A has slightly better rewards.

Posterior Distribution Black bar is the bandit's actual probability of success	Hits	Misses	Total Pulls
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	18 (19%)	76	94
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	17 (17%)	86	103

What Did We Learn?

Wait, why are there more pulls for Slot A?

Our player favored **previously successful** actions. But some percent of the time, our player picked randomly to **gain experience** with all the slots.

Posterior Distribution Black bar is the bandit's actual probability of success	Hits	Misses	Total Pulls
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	18 (19%)	76	94
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	17 (17%)	86	103

What Just Happened?

That wasn't planning, it was learning!

- Specifically, reinforcement learning
- There was an MDP, but you couldn't solve it with just computation
- You needed to actually act to figure it out
- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$
- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

[Kohl and Stone, ICRA 2004]

Initial

[Video: AIBO WALK – initial]

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – training]

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – finished]

Video of Demo Crawler Bot

	🎂 Арр	olet						
		Run	Skip 1000000 step	Stop Skip 30	000 steps Reset sp	peed counter	Reset Q	
		average speed : 2.31	1914863606509					
İ								
			1					
		eps	0.8 eps++	gam- 0.9	gam++	alpha- 1.0	alpha++	

Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning

Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - Goal: learn the state values
- In this case:
 - Learner is "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

- Goal: Compute values for each state under $\boldsymbol{\pi}$
- Idea: Average together observed sample values
 - Act according to $\boldsymbol{\pi}$
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

Example: Direct Evaluation

Example: Direct Evaluation

Assume X = 1

Example: Direct Evaluation

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different? Temporal Difference Learning

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of V(s):sample =
$$R(s, \pi(s), s') + \gamma V^{\pi}(s')$$
Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$ Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$

Exponential Moving Average

- Exponential moving average
 - The running interpolation update:
 - Makes recent samples more important: $\bar{x}_n = (1 \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

 $\alpha = 1/2$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q(s, a)$$
$$Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

- Idea: learn Q-values, not values
- Makes action selection model-free too!

s,a,s

S

a

s, a

Q-Learning

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate:
 - Consider your new sample estimate:

Q(s,a)

Incorporate the new estimate into a runnin

 $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$ $Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [sample]$

Video of Demo Q-Learning -- Crawler

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Exploration vs. Exploitation

How to Explore?

Several schemes for forcing exploration

Simplest: random actions (ε-greedy) Every time step, flip a coin With (small) probability ε, act randomly With (large) probability 1-ε, act on current policy

Problems with random actions?

You do eventually explore the space, but keep thrashing around once learning is done One solution: lower ε over time Another solution: exploration functions

<i>,</i> (
_	

Exploration Functions

When to explore?

Random actions: explore a fixed amount Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

Exploration function

Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u, n) = u + k/n

Regular Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$

Modified Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q(s',a'), N(s',a'))$

Note: this propagates the "bonus" back to states that lead to unknown states as well!

Regret

Even if you learn the optimal policy, you still make mistakes along the way Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal Example: random exploration and

exploration functions both end up optimal, but random exploration has higher regret

<u>Mnih et al. 2015</u>