
Homework 3: Pacman versus the world
Due February 12th at 10pm

Part 1: Basic search
The UC Berkeley AI course has a set of projects that revolve around the Pacman game. Pacman is
a game in which your character, seemingly a sentient block of cheese, tries to (1) eat lots of pellets
and (2) avoid being eaten by ghosts.

The Berkeley projects come with a Python library that implements a GUI to run Pacman on your
computer. Your goal is to fill in some of the functions related to search, which implement strategies
for the Pacman agent to use during the game.

Refer to the UC Berkeley assignment for instructions on how to run the Pacman game simula-
tion: UC Berkeley Project 1.

Download the starter code using the link on the course website. If you unzip this file, you will
find a folder called singleagent. In Part 1, you will implement basic search strategies that will
enable you to find a path to a goal (for instance, a game block with a particularly tasty item, like a
strawberry). You will fill in missing functions in search.py.

You can check your work by running the autograder.py file that is provided. You are not required
to implement all parts of the original UC Berkeley assignment, so you should expect to see zeros
for questions that you have not attempted.

Task 1: Breadth-first search
Implement breadth-first search by completing the breadthFirstSearch function. I have al-
ready implemented the depthFirstSearch function for you. Much of the code will be similar, al-
though you will need a different data structure.

Before starting your implementation, take a look at the data structures provided in util.py. You
should also look at the searchProblem class at the top of the search.py file, so that you understand
what methods a problem object has.

Task 2: Uniform cost search
Implement uniform cost search by completing the uniformCostSearch function.

This is very similar to breadth-first search. The difference is that now your data structure needs to
be one that is ordered according to the cost of reaching the nodes

1

https://inst.eecs.berkeley.edu/~cs188/fa21/project1


Task 3: A* search
Implement A* search for Pacman by completing the aStarSearch function in search.py.

In A* search, your agent is guided by a heuristic. You do not need to write your own heuristic; it
is an argument that will be passed in.

I found it useful to make a helper function called cost that, given a node, a problem, and a heuristic,
returns the estimated cost of the node. Remember that in A* search, the estimated cost of a state
includes both the cost to reach the current state, and the heuristically estimated cost of reaching the
goal from the state.

When you are trying to determine the next action to take, make sure you consider three compo-
nents: the cost of reaching the current state, the cost of taking the action, and the estimated cost of
reaching the goal from the state that you will reach if you take that action.

Part 2: You Look Like a Thing and I Love You reflections

Question 1 (15 points)
Pick a game that you enjoy playing and research whether an AI player has been built for it. How
well does the AI player do? What kind of techniques does it use? If the AI player has surpassed
human performance, when did this happen?

You can pick a board game or a video game.

Question 2 (15 points)
Oh no! Someone has unlocked all of the cages at the dog show. Robodog has been tasked with
rounding up the stray pups and making sure that each dog is in its own cage, wearing its own hat.

Can you come up with a heuristic for Robodog to use in informed search? Make sure to discuss
why your heuristic is admissible.

2


