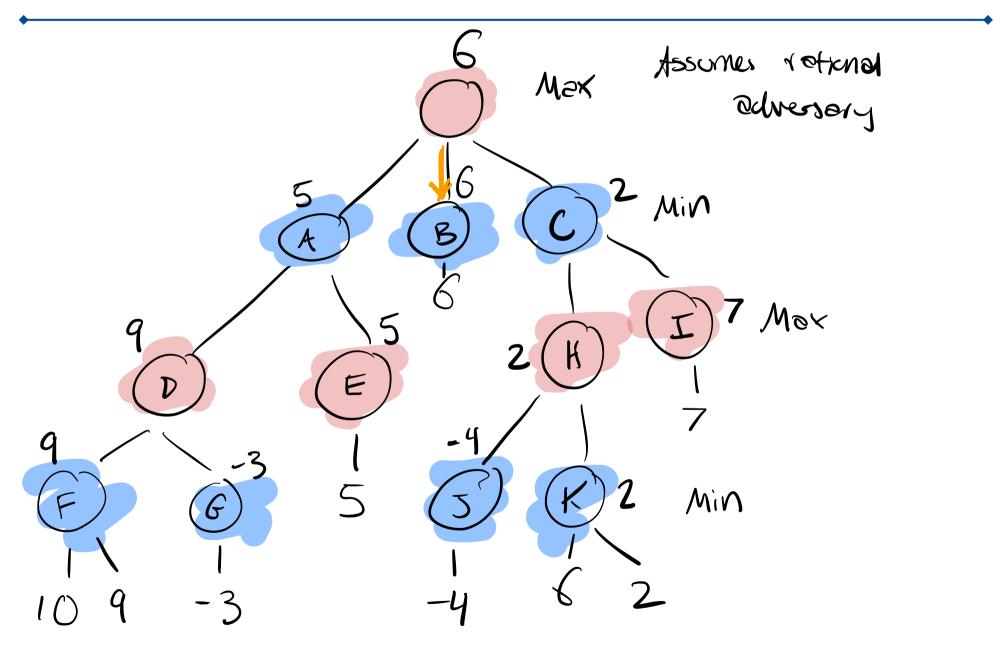
CS 232: Artificial Intelligence

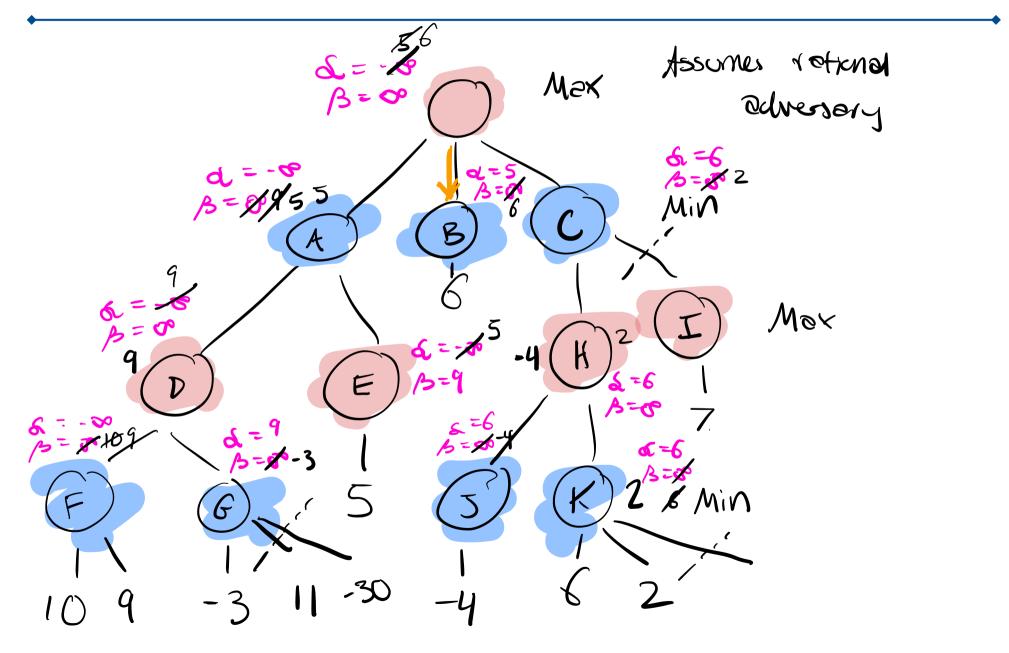
Spring 2024

Prof. Carolyn Anderson Wellesley College

Midterm Review



Midterm Review



Midterm Review

Recap: Logistic Regression Classifiers

How to do classification

For each feature x_i, weight w_i tells us importance of x_i
(Plus we'll have a bias b)

We'll sum up all the weighted features and the bias

$$z = \left(\sum_{i=1}^{n} w_i x_i\right) + b$$
$$z = w \cdot x + b$$

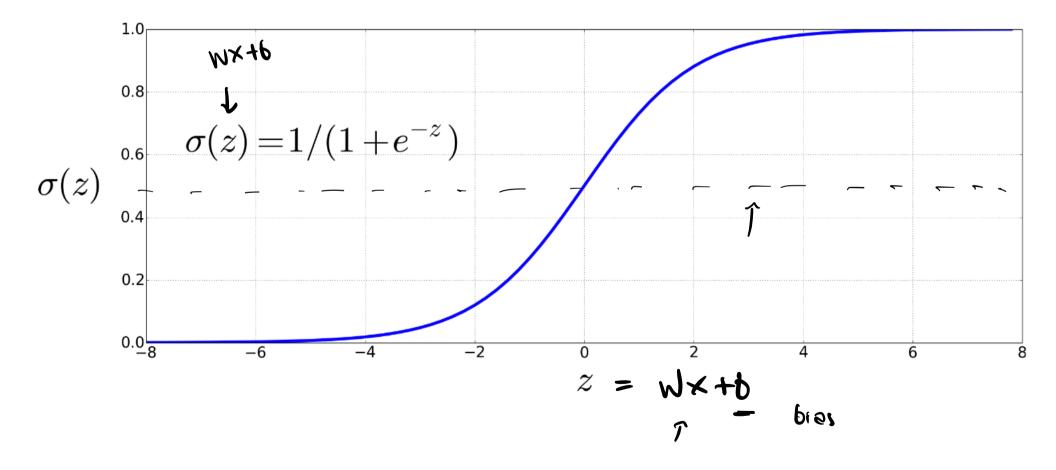
If this sum is high, we say y=1; if low, then y=0

Turning a probability into a classifier

decision(x) =
$$\begin{cases} 1 & \text{if } P(y=1|x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

0.5 here is called the decision boundary

The very useful sigmoid or logistic function



Turning a probability into a classifier

decision(x) =
$$\begin{cases} 1 & \text{if } P(y=1|x) > 0.5 & \text{if } W \cdot x + b > 0 \\ 0 & \text{otherwise} & \text{if } W \cdot x + b < 0 \end{cases}$$

Idea of logistic regression

- Compute w·x+b
- Pass it through the sigmoid function: σ(w · x+b) so that we can treat it as a probability

$$P(y=1) = \sigma(w \cdot x + b)$$
$$P(y=0) = 1 - \sigma(w \cdot x + b)$$

The two phases of logistic regression

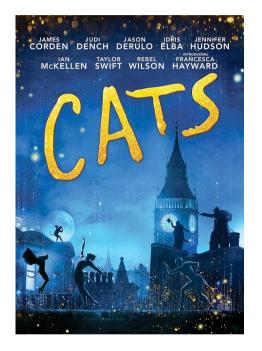
Training: we learn weights *w* and *b* using **stochastic gradient descent** and **cross-entropy loss**.

Test: Given a test example x we compute p(y|x) using learned weights w and b, and return whichever label (y = 1 or y = 0) is higher probability

Logistic Regression Example: Text Classification

Sentiment example: does y=1 or y=0?

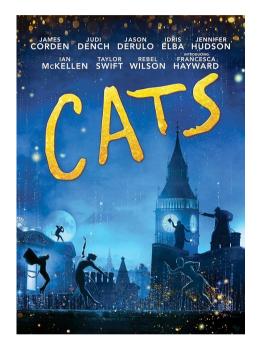
CATS was a marvelous disaster, with witty charm and emotion throughout, cheeky charisma and crying no doubt... I personally went in expecting the worst movie I had ever seen - and it was far more awful and disappointing that I expected.



Sentiment example: does y=1 or y=0?

$+ + + \odot$ Verified Jan 12, 2020

CATS was a marvelous disaster, with witty charm and emotion throughout, cheeky charisma and crying no doubt... I personally went in expecting the worst movie I had ever seen - and it was far more awful and disappointing that I expected.



Features

V SV	Definition	Value
×	Count (positive works)	6
×z	(ount (nightive words)	4
×3	<pre> { 1 it "no" & doc 2 0 otherwise </pre>	1
×ч	El if "!" E doc opmuise	0
XS	log (word count)	3.73
	42 $W = [2.5]$	-5,-1.2,2,0.7]

Weights

 $W = [2.5, -5, -1.2, 2, 0.7] \qquad b = 0.1$ X = [6, 4, 1, 0, 3.73]

$$p(+1x) = p(y=1|x) \qquad p(-1x) = 1-0.14 \\ = 0.86 \\ = \sigma(wx+b) \\ = \sigma(wx+o.1) \\ = 6(2.5.6+-5.4+-1.2.1+2.0+0.7.3.73+ \\ = \sigma(-1.78) \\ = 0.14 \\ 0.1)$$

Classifying sentiment for input x

Classification in (binary) logistic regression: summary

Given:

- a set of classes: (+ sentiment,- sentiment)
- ^o a vector **x** of features [x1, x2, x3, ..., xn]
 - x1= count("awesome") in document
 - x3 = 1 if "no" in document else 0
- A vector **w** of weights [w1, w2, ..., wn]
- $^{\circ}$ w_i for each feature f_i

$$P(y=1) = \sigma(w \cdot x + b)$$

=
$$\frac{1}{1 + \exp(-(w \cdot x + b))}$$

Feature Representations

Slides borrowed from Jurafsky & Martin Edition 3

Image Features

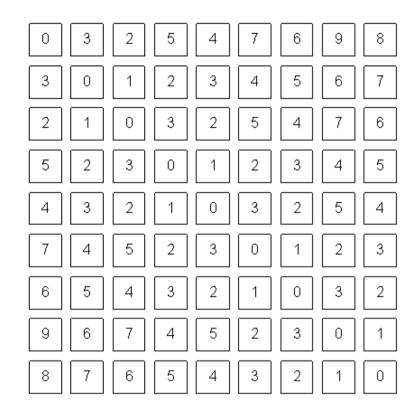
For computer vision applications, we need a way of describing images. We represent images as matrices of pixel values.

Grayscale images can be represented with a single matrix.

Color images need to be represented with a **3D tensor** (3rd dimension encodes color channel).

Why matrices for images and vectors for text? Language is **sequential**, which makes it more useful to concatenate vectors lengthwise rather than stack them.

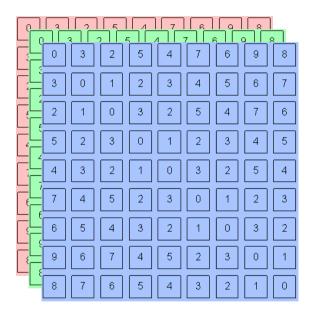
grayscale images are matrices



what range of values can each pixel take?

Slides adapted from Mohit Iyyer

color images are tensors



channel x height x width

Channels are usually RGB: Red, Green, and Blue Other color spaces: HSV, HSL, LUV, XYZ, Lab, CMYK, etc Logistic Regression Example: Pet Picture Classification

Goal: Classify Pet Pictures

- Dataset: cat + dog pictures
- Goal: classify a picture as either a cat or a dog
- Input: grayscale images

Building a Model

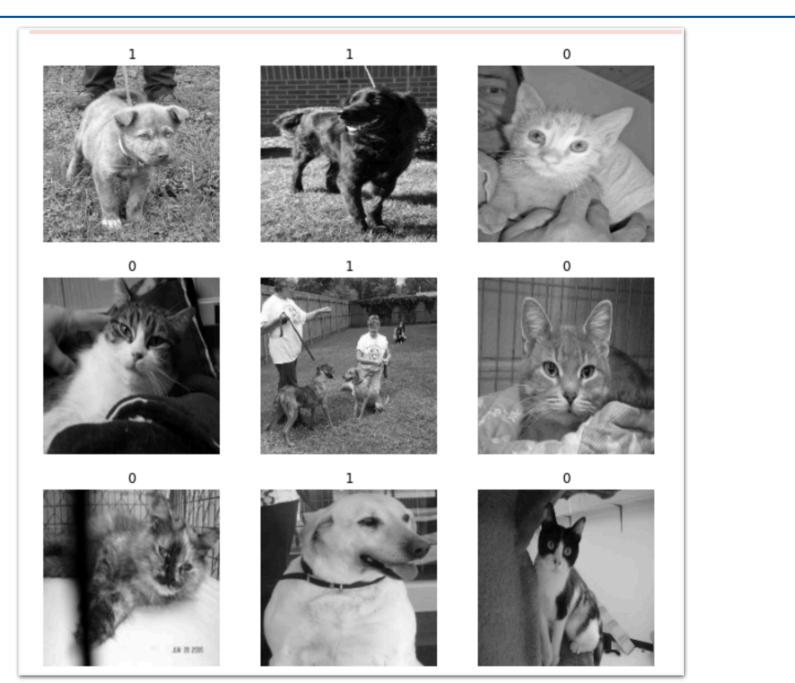
We'll build our model using a machine learning library called **Tensorflow**.

Tensorflow is a Python library, but most functions are implemented in C (so they are fast!).

Tensorflow provides useful abstractions for models:

- tensor: n-dimensional container for data
- layer: apply functions to an input tensor of n dimensions to produce an output tensor of m dimensions.
- model: consist of layers connected together

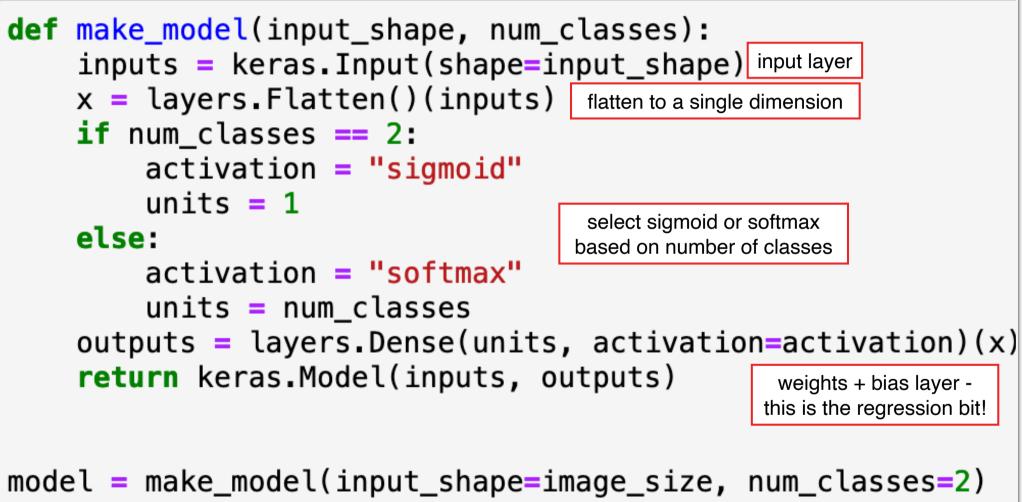
Example Data



Splitting Our Data

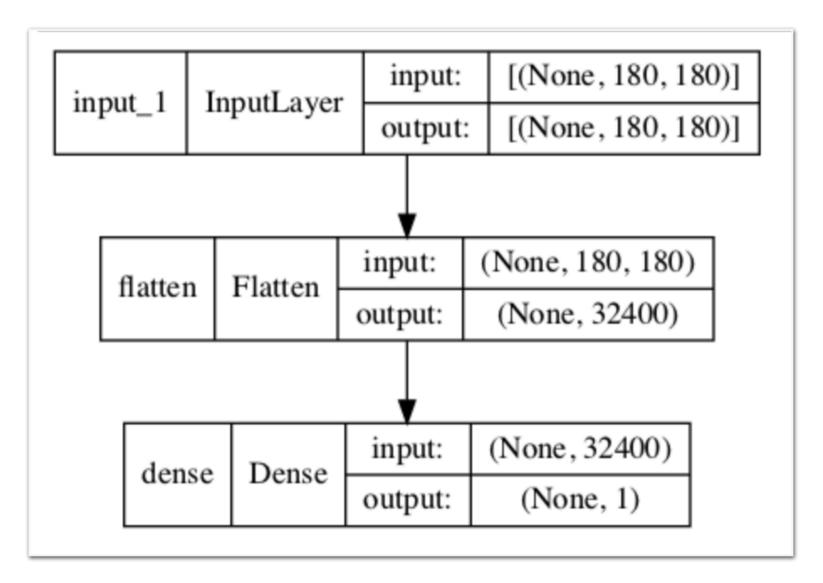
Generate a Dataset In [4]: image size = (180, 180) batch size = 32train ds = tf.keras.preprocessing.image_dataset_from_directory("PetImages", color_mode='grayscale', validation split=0.2, subset="training", seed=1337, image_size=image_size, batch size=batch size, val_ds = tf.keras.preprocessing.image_dataset_from_directory("PetImages", color_mode='grayscale', validation_split=0.2, subset="validation", seed=1337. image_size=image_size, batch size=batch size, Found 23410 files belonging to 2 classes. Using 18728 files for training. Found 23410 files belonging to 2 classes. Using 4682 files for validation.

Creating Our Model Architecture



keras.utils.plot_model(model, show_shapes=True)

Creating Our Model Architecture



Training

Train the model

```
epochs = 50
callbacks = [
    keras.callbacks.ModelCheckpoint("save_at_{epoch}.h5"),
]
model.compile(
    optimizer=keras.optimizers.Adam(1e-3),
    loss="binary_crossentropy",
    metrics=["accuracy"],
)
model.fit(
    train_ds, epochs=epochs, callbacks=callbacks, validation_data=val_ds,
)
```

Computing with Probabilities

Numerical Underflow

So far we've been working with relatively small sample spaces. This means our probabilities have been decently large.

As we go on in this class, our sample spaces are going to get much larger. We want to be able to reason about the probabilities of things like:

- All words in English
- All pixels in a photo
- All possible game states for Pacman

Numerical Underflow

Problem: when our probabilities get really really small, programming languages start making mistakes.

There is a **bound on precision** in numerical computing.

This is because of the limitations on space allocation for (floating point) numbers.

Solution: make the numbers bigger

 Intuition: we care about how big probabilities are relative to the other probabilities in our distribution, not the actual value.

 $\frac{\text{Probabilities:}}{p(\text{heart}) = 0.1}$ p(rainbow) = 0.2p(letter) = 0.7

Interpretation: a letter is 7 times more likely than a heart!

Solution: make the numbers bigger

 Intuition: we care about how big probabilities are relative to the other probabilities in our distribution, not the actual value.

Probabilities: $p(heart) = 0.1 \ 100$ $p(rainbow) = 0.2 \ 200$ $p(letter) = 0.7 \ 700$ What if we just multiply all our probs by 100?

This preserves the ratio.

Solution: make the numbers bigger

 What if we just multiply all our probs by 100? This preserves the ratio.

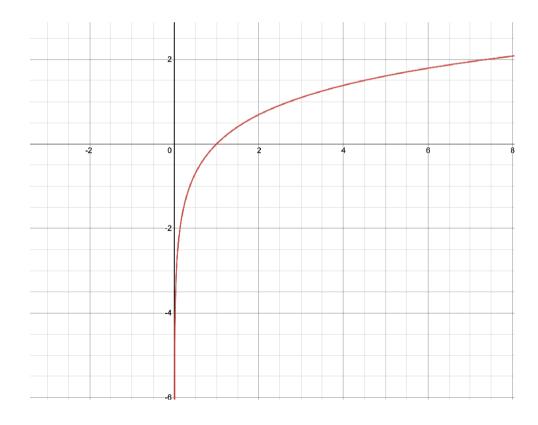
<u>Probabilities:</u> p(heart) = 0.1100 p(rainbow) = 0.2200p(letter) = 0.7700 However, if we want to recover the probabilities later, we'll need to **renormalize** them. This means **remembering that we multiplied by 100**.

Solution: log-transform the numbers

 Instead, we use a log transformation. This changes the range from [0,1] to [-∞, 0].

> Log base doesn't matter much but we usually use natural log (base e):

Probabilities: p(heart) = 0.1 - 2.3 p(rainbow) = 0.2 - 1.6p(letter) = 0.7 - 0.36



www.desmos.com/calculator/aczt76asao