
Prof. Carolyn Anderson
Wellesley College

CS	232:		

Arti+icial	Intelligence
Spring	2024

Midterm	Review

Max
Assumes rational

adversary

5 IT 2 Min

9 156 1
2

May

9 3 I 4 1 t
5 2 Min

11 1 11
10 9 3 6 2

Midterm	Review

Max
Assumes rational

adversary

2 85 to 1882

6 I
5
4H02

Max

I
18 I

06 5
28 Min

11
109

13 11 30 6

Midterm	Review

freedy BestFirst Search cost nrn

AK cost gin thin

Off
hrn guess of howexpensive it is from

n to goal
g n actual cost from start to n

son ofcostofactions takento reach in
Admissable heuristic is optimistic never overestimates

cost of reaching goalfroma

Recap:		

Logistic	Regression	Classi+iers

How	to	do	classification

For each feature xi, weight wi tells us importance of xi

◦ (Plus we'll have a bias b)
We'll sum up all the weighted features and the bias

If this sum is high, we say y=1; if low, then y=0

Turning	a	probability	into	a	classifier

0.5 here is called the decision boundary

The	very	useful	sigmoid	or	logistic	function

6

Wxtb

y

WI bias

Turning	a	probability	into	a	classifier

if w·x+b > 0
if w·x+b ≤ 0

Idea	of	logistic	regression

✦ Compute w·x+b

✦ Pass it through the sigmoid function: σ(w·x+b)
so that we can treat it as a probability

The	two	phases	of	logistic	regression	

Training: we learn weights w and b using stochas,c
gradient descent and cross-entropy loss.

Test: Given a test example x we compute p(y|x) using
learned weights w and b, and return whichever label (y =
1 or y = 0) is higher probability

Logistic	Regression	Example:		

Text	Classi+ication

Sentiment	example:	does	y=1	or	y=0?

CATS was a marvelous
disaster, with witty charm
and emotion throughout,
cheeky charisma and crying
no doubt... I personally went
in expecting the worst movie
I had ever seen - and it was
far more awful and
disappointing that I expected. 12

Sentiment	example:	does	y=1	or	y=0?

CATS was a marvelous
disaster, with witty charm
and emotion throughout,
cheeky charisma and crying
no doubt... I personally went
in expecting the worst movie
I had ever seen - and it was
far more awful and
disappointing that I expected. 13

Features

2 Count negative
wads 4

1 it no Edoc 1
0 otherwise

4
if Edoc 0
otherwise

5 log word count 3.73

42 W 2.5 5 1.2 2.0.7

Weights

6 0.1

6,4 1,0 3.737

pct pry 1 Pr 8 1 0.14

WX 6 0.86

G w 0.1

6 2.5.6 5.4 1.2 2.0 0.7.3.734
0.1

of 1.78
0.14

Classifying	sentiment	for	input	x

18

	

Classification	in	(binary)	logistic	regression:	summary

Given:
◦ a set of classes: (+ sentiment,- sentiment)
◦ a vector x of features [x1, x2, x3, …, xn]

◦ x1= count("awesome") in document
◦ x3 = 1 if "no" in document else 0

◦ A vector w of weights [w1, w2, …, wn]
◦ wi for each feature fi

Feature	Representations

Slides borrowed from Jurafsky & Martin Edition 3

For computer vision applications, we need a way of
describing images. We represent images as matrices of
pixel values.

Grayscale images can be represented with a single matrix.

Color images need to be represented with a 3D tensor
(3rd dimension encodes color channel).

Image	Features

Why matrices for images and vectors for text?
Language is sequential, which makes it more useful to
concatenate vectors lengthwise rather than stack them.

Title	Text

CS6501: Vision and Language
What we see What a computer sees

grayscale images are matrices

what range of values can each pixel take?

Slides adapted from Mohit Iyyer

Title	Text

CS6501: Vision and Language

color images are tensors

!h"##$% & h$'(h) & *'+)h

Channels are usually RGB: Red, Green, and Blue
Other color spaces: HSV, HSL, LUV, XYZ, Lab, CMYK, etc

Slides adapted from Mohit Iyyer

Logistic	Regression	Example:	

Pet	Picture	Classi+ication

✦ Dataset: cat + dog pictures

✦ Goal: classify a picture as either a cat or a dog

✦ Input: grayscale images

Goal:	Classify	Pet	Pictures

Building	a	Model

We’ll build our model using a machine learning library
called Tensorflow.

Tensorflow is a Python library, but most functions are
implemented in C (so they are fast!).

Tensorflow provides useful abstractions for models:
✦ tensor: n-dimensional container for data
✦ layer: apply functions to an input tensor of n

dimensions to produce an output tensor of m
dimensions.

✦ model: consist of layers connected together

Example	Data

Splitting	Our	Data

Creating	Our	Model	Architecture

input layer

flatten to a single dimension

select sigmoid or softmax
based on number of classes

weights + bias layer -
this is the regression bit!

Creating	Our	Model	Architecture

Training

Computing	with	

Probabilities

Numerical	Under+low

So far we've been working with relatively small sample
spaces. This means our probabilities have been decently
large.

As we go on in this class, our sample spaces are going to
get much larger. We want to be able to reason about the
probabilities of things like:

✦ All words in English

✦ All pixels in a photo

✦ All possible game states for Pacman

Problem: when our probabilities get really really small,
programming languages start making mistakes.

There is a bound on precision in numerical computing.

This is because of the limitations on space allocation for
(floating point) numbers.

Numerical	Under+low

✦ Intuition: we care about how big probabilities are
relative to the other probabilities in our distribution, not
the actual value.

Solution:	make	the	numbers	bigger

Probabilities:
p(heart) = 0.1
p(rainbow) = 0.2
p(letter) = 0.7

Interpretation: a letter is
7 times more likely than
a heart!

✦ Intuition: we care about how big probabilities are
relative to the other probabilities in our distribution, not
the actual value.

Solution:	make	the	numbers	bigger

Probabilities:
p(heart) = 0.1 100
p(rainbow) = 0.2 200
p(letter) = 0.7 700

What if we just multiply
all our probs by 100?

This preserves the ratio.

✦ What if we just multiply all our probs by 100? This
preserves the ratio.

Solution:	make	the	numbers	bigger

Probabilities:
p(heart) = 0.1 100
p(rainbow) = 0.2 200
p(letter) = 0.7 700

However, if we want to
recover the probabilities
later, we'll need to
renormalize them. This
means remembering that
we multiplied by 100.

✦ Instead, we use a log transformation. This changes the
range from [0,1] to [-∞, 0].

Solution:	log-transform	the	numbers

Probabilities:
p(heart) = 0.1 -2.3
p(rainbow) = 0.2 -1.6
p(letter) = 0.7 -0.36

Log base doesn't matter much but we
usually use natural log (base e):

www.desmos.com/calculator/aczt76asao

