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Reminders
• Please install Tensorflow ASAP so I can help you with any 

issues!

• My help hours: Friday 3:30-4:30

• Midterm grades coming soon (will also do a general progress 
update email next week with count of late days used)

• HW 5 released - due Monday

• HW 6 won't be released until after Spring Break



Recap:		
Logistic	Regression	Classi+iers



How	to	do	classification

For each feature xi, weight wi tells us importance of xi

◦ (Plus we'll have a bias b)
We'll sum up all the weighted features and the bias

If this sum is 
high, we say y=1
If low, then y=0POS

NEG



Sentiment	example:	does	y=1	or	y=0?

CATS was a marvelous 
disaster, with witty charm 
and emotion throughout, 
cheeky charisma and crying 
no doubt... I personally went 
in expecting the worst movie 
I had ever seen - and it was 
far more awful and 
disappointing that I expected. 5



Classifying	sentiment	for	input	x
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Weights: [2.5,-5,0.5,2,0.7]

Bias: 0.1

Features for CATS review: [6,4,1,0,3.74]
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The	two	phases	of	logistic	regression	

Training: we learn weights w and b using stochas,c 
gradient descent and cross-entropy loss.  

Test: Given a test example x we compute p(y|x) using 
learned weights w and b, and return whichever label (y = 
1 or y = 0) is higher probability

Supervised Machine Learning

Optimization

Objective Function



Logistic	Regression	Example:	
Pet	Picture	Classi+ication



✦ Dataset: cat + dog pictures

✦ Goal: classify a picture as either a cat or a dog

✦ Input: grayscale images

Goal:	Classify	Pet	Pictures



Building	a	Model
We’ll build our model using a machine learning library 
called Tensorflow. 

Tensorflow is a Python library, but most functions are 
implemented in C (so they are fast!).

Tensorflow provides useful abstractions for models:
✦ tensor: n-dimensional container for data
✦ layer: apply functions to an input tensor of n 

dimensions to produce an output tensor of m 
dimensions.

✦ model: consist of layers connected together



Creating	Our	Model	Architecture
input layer

flatten to a single dimension

select sigmoid or softmax 
based on number of classes

weights + bias layer - 
this is the regression bit!



Learning in Supervised Classification

Supervised classification:  
• We know the correct label y (either 0 or 1) for each x.  
• But what the system produces is an estimate,  
We want to set w and b to minimize the distance between 
our estimate (i) and the true y(i).  
• We need a distance estimator: a loss function or a cost 

function 
• We need an optimization algorithm to update w and b to 

minimize the loss.
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Learning components

A loss function: 
◦ cross-entropy loss 

An optimization algorithm: 
◦ stochastic gradient descent



The distance between and y!̂ 

We want to know how far is the classifier output: 
          

from the true output: 
                  

We'll call this difference: 
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Intuition of negative log likelihood loss 
 = cross-entropy loss

A case of conditional maximum likelihood 
estimation  
We choose the parameters w,b that maximize 
• the log probability  
• of the true y labels in the training data  
• given the observations x 
 



Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)  

Since there are only 2 discrete outcomes (0 or 1) we can 
express the probability p(y|x) from our classifier as: 
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Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x) 
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Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)  
Minimize the cross-entropy loss 
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Does this work for our sentiment example?

We want loss to be: 
• smaller if the model estimate is close to correct 

• bigger if model is confused 

Let's first suppose the true label of this is y=1 (positive)

CATS was a marvelous disaster, with witty charm and 
emotion throughout, cheeky charisma and crying no 
doubt... I personally went in expecting the worst movie I 
had ever seen - and it was far more awful and 
disappointing that I expected. 
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Let's see if this works for our sentiment example

True value is y=0.  How well is our model doing? 
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What if the true label was 1?
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Let's see if this works for our sentiment example
The loss when model was right (if true y=0)  

Is lower than the loss when model was wrong (if true y=1): 

Sure enough, loss was bigger when model was wrong!
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Learning components

A loss function: 
◦ cross-entropy loss 

An optimization algorithm: 
◦ stochastic gradient descent



Computing	with	
Probabilities



Numerical	Under+low
So far we've been working with relatively small sample 
spaces. This means our probabilities have been decently 
large.

As we go on in this class, our sample spaces are going to 
get much larger. We want to be able to reason about the 
probabilities of things like:

✦ All words in English

✦ All pixels in a photo

✦ All possible game states for Pacman



Problem: when our probabilities get really really small, 
programming languages start making mistakes.

There is a bound on precision in numerical computing.

This is because of the limitations on space allocation for 
(floating point) numbers.

Numerical	Under+low



✦ Intuition: we care about how big probabilities are 
relative to the other probabilities in our distribution, not 
the actual value.

Solution:	make	the	numbers	bigger

Probabilities:
p(heart) = 0.1
p(rainbow) = 0.2
p(letter) = 0.7

Interpretation: a letter is 
7 times more likely than 
a heart!



✦ Intuition: we care about how big probabilities are 
relative to the other probabilities in our distribution, not 
the actual value.

Solution:	make	the	numbers	bigger

Probabilities:
p(heart) = 0.1 100
p(rainbow) = 0.2 200
p(letter) = 0.7 700

What if we just multiply 
all our probs by 100?

This preserves the ratio.



✦ What if we just multiply all our probs by 100? This 
preserves the ratio.

Solution:	make	the	numbers	bigger

Probabilities:
p(heart) = 0.1 100
p(rainbow) = 0.2 200
p(letter) = 0.7 700

However, if we want to 
recover the probabilities 
later, we'll need to 
renormalize them. This 
means remembering that 
we multiplied by 100.



✦ Instead, we use a log transformation. This changes the 
range from [0,1] to [-∞, 0].

Solution:	log-transform	the	numbers

Probabilities:
p(heart) = 0.1 -2.3
p(rainbow) = 0.2 -1.6
p(letter) = 0.7 -0.36

Log base doesn't matter much but we 
usually use natural log (base e):

www.desmos.com/calculator/aczt76asao

math logr mathexpc


