
Prof. Carolyn Anderson
Wellesley College

CS	232:		
Arti+icial	Intelligence Spring	2024

Reminders
• Please install Tensorflow ASAP so I can help you with any

issues!

• My help hours: Friday 3:30-4:30

• Midterm grades coming soon (will also do a general progress
update email next week with count of late days used)

• HW 5 released - due Monday

• HW 6 won't be released until after Spring Break

Recap:		
Logistic	Regression	Classi+iers

How	to	do	classification

For each feature xi, weight wi tells us importance of xi

◦ (Plus we'll have a bias b)
We'll sum up all the weighted features and the bias

If this sum is
high, we say y=1
If low, then y=0POS

NEG

Sentiment	example:	does	y=1	or	y=0?

CATS was a marvelous
disaster, with witty charm
and emotion throughout,
cheeky charisma and crying
no doubt... I personally went
in expecting the worst movie
I had ever seen - and it was
far more awful and
disappointing that I expected. 5

Classifying	sentiment	for	input	x

6

Weights: [2.5,-5,0.5,2,0.7]

Bias: 0.1

Features for CATS review: [6,4,1,0,3.74]

0
fontPgpresence

of no

lengthation in logside

2 1
some presence of

6 1.78
0.14 2

0.54.0.77 651.0.3.743 8I
1.78

n

1 0.14
0 86

The	two	phases	of	logistic	regression	

Training: we learn weights w and b using stochas,c
gradient descent and cross-entropy loss.

Test: Given a test example x we compute p(y|x) using
learned weights w and b, and return whichever label (y =
1 or y = 0) is higher probability

Supervised Machine Learning

Optimization

Objective Function

Logistic	Regression	Example:	
Pet	Picture	Classi+ication

✦ Dataset: cat + dog pictures

✦ Goal: classify a picture as either a cat or a dog

✦ Input: grayscale images

Goal:	Classify	Pet	Pictures

Building	a	Model
We’ll build our model using a machine learning library
called Tensorflow.

Tensorflow is a Python library, but most functions are
implemented in C (so they are fast!).

Tensorflow provides useful abstractions for models:
✦ tensor: n-dimensional container for data
✦ layer: apply functions to an input tensor of n

dimensions to produce an output tensor of m
dimensions.

✦ model: consist of layers connected together

Creating	Our	Model	Architecture
input layer

flatten to a single dimension

select sigmoid or softmax
based on number of classes

weights + bias layer -
this is the regression bit!

Learning in Supervised Classification

Supervised classification:
• We know the correct label y (either 0 or 1) for each x.
• But what the system produces is an estimate,
We want to set w and b to minimize the distance between
our estimate (i) and the true y(i).
• We need a distance estimator: a loss function or a cost

function
• We need an optimization algorithm to update w and b to

minimize the loss.

!̂

!̂

18

in training

Learning components

A loss function:
◦ cross-entropy loss

An optimization algorithm:
◦ stochastic gradient descent

The distance between and y!̂

We want to know how far is the classifier output:

from the true output:

We'll call this difference:

I orwX b

y 0,1

L joy loss
how much J
is different than y

Intuition of negative log likelihood loss
 = cross-entropy loss

A case of conditional maximum likelihood
estimation
We choose the parameters w,b that maximize
• the log probability
• of the true y labels in the training data
• given the observations x

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can
express the probability p(y|x) from our classifier as:

pry x j 1 g 17 n

If 9 1 if y o

pry x j 1 g prying 51 95

y I j 1 55

j i g l I

g 1 1 0.86

0.86 0.14

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize: j 1 g
s

pry xiw
Find W such that we maximie pry Xing

logpry x log j 1 5
9

IE
t

itm
disappears

whatever maximizes logply x
will also maximize ply x

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Minimize the cross-entropy loss

Minimize:
Goal make

logpry x CCErj.gs
very small

ylogy l g logly

y logo w 6 l g log 1 01 6

tominize 1 if correct 7
actual

label probability

mistake labelis 1 is 0
assignedto latel

probability 0 for by
assigned tolabel 1

for by weights w g
weightsWoo

Does this work for our sentiment example?

We want loss to be:
• smaller if the model estimate is close to correct

• bigger if model is confused

Let's first suppose the true label of this is y=1 (positive)

CATS was a marvelous disaster, with witty charm and
emotion throughout, cheeky charisma and crying no
doubt... I personally went in expecting the worst movie I
had ever seen - and it was far more awful and
disappointing that I expected.

negative
a arm

Let's see if this works for our sentiment example

True value is y=0. How well is our model doing?

0.14 1 9 0

LCE joy Ly log Wxtb

l y log 1 o w to

O.logorwx
1 0 log 11 0 83
log 1 0.14
10g 0.86
0.15

What if the true label was 1?

0.14

Eglog orwxt.at logr1 orwxt6

log orwx o

log 0.14
1.97

Let's see if this works for our sentiment example
The loss when model was right (if true y=0)

Is lower than the loss when model was wrong (if true y=1):

Sure enough, loss was bigger when model was wrong!

Lee 0.14 8 0.15

Lce 0.14 1 1 97

Learning components

A loss function:
◦ cross-entropy loss

An optimization algorithm:
◦ stochastic gradient descent

Computing	with	
Probabilities

Numerical	Under+low
So far we've been working with relatively small sample
spaces. This means our probabilities have been decently
large.

As we go on in this class, our sample spaces are going to
get much larger. We want to be able to reason about the
probabilities of things like:

✦ All words in English

✦ All pixels in a photo

✦ All possible game states for Pacman

Problem: when our probabilities get really really small,
programming languages start making mistakes.

There is a bound on precision in numerical computing.

This is because of the limitations on space allocation for
(floating point) numbers.

Numerical	Under+low

✦ Intuition: we care about how big probabilities are
relative to the other probabilities in our distribution, not
the actual value.

Solution:	make	the	numbers	bigger

Probabilities:
p(heart) = 0.1
p(rainbow) = 0.2
p(letter) = 0.7

Interpretation: a letter is
7 times more likely than
a heart!

✦ Intuition: we care about how big probabilities are
relative to the other probabilities in our distribution, not
the actual value.

Solution:	make	the	numbers	bigger

Probabilities:
p(heart) = 0.1 100
p(rainbow) = 0.2 200
p(letter) = 0.7 700

What if we just multiply
all our probs by 100?

This preserves the ratio.

✦ What if we just multiply all our probs by 100? This
preserves the ratio.

Solution:	make	the	numbers	bigger

Probabilities:
p(heart) = 0.1 100
p(rainbow) = 0.2 200
p(letter) = 0.7 700

However, if we want to
recover the probabilities
later, we'll need to
renormalize them. This
means remembering that
we multiplied by 100.

✦ Instead, we use a log transformation. This changes the
range from [0,1] to [-∞, 0].

Solution:	log-transform	the	numbers

Probabilities:
p(heart) = 0.1 -2.3
p(rainbow) = 0.2 -1.6
p(letter) = 0.7 -0.36

Log base doesn't matter much but we
usually use natural log (base e):

www.desmos.com/calculator/aczt76asao

math logr mathexpc

