CS 232:

Spring 2024
Artificial Intelligence PETG

Prof. Carolyn Anderson
Wellesley College

Reminders

*

HW 5 due Monday, 3/11

My help hours today: 3:30-4:30

Lyra's help hours: Sunday 4-6

Read YLLATAILY Chapter 9-10 for Tuesday

Recap

The two phases of logistic regression

Training: we learn weights w and b using stochastic
gradient descent and cross-entropy loss.

Test: Given a test example x we compute p(y|x)
using learned weights w and b, and return
whichever label (y =1 or y = 0) is higher probability

Classification in (binary) logistic regression: summary

Given:
> a set of classes: (+ sentiment,- sentiment)

° avector x of features [x1, x2, .., Xn]
> x1= count("awesome"
> x2 = log(number of words in review)

° A vector wof weights [wl, w2, .., wn]
o w; for each feature f;

Py=1) = o(w-x+b)
1
I+exp(—(w-x+Db))

Multi-class Regression

Multinomial Logistic Regression

Often we need more than 2 classes
Positive /negative / neutral

Parts of speech (noun, verb, adjective, adverb, preposition,
etc.)

Classify emergency SMSs into different actionable classes
If >2 classes we use multinomial logistic regression

= Softmax regression
= Multinomial logit
= Maximum entropy modeling or MaxEnt

So "logistic regression” means binary (2 classes)

Multinomial Logistic Regression

The probability of everything must still sum to 1

P(positive|doc) + P(negative|doc) +
P(neutral|doc) = 1

Need a generalization of the sigmoid called softmax

Takes a vector z = [Z1, 22, ..., zk] of k arbitrary values

Outputs a probability distribution

The softmax function

Turns a vector z = [z, z,, ... , z;] Of k arbitrary
values into probabilities
P e (We X4 b,)
plazelxdy = 4

é @KP (WJ' -K ‘HD}

7

The softmax function

Turns a vector z = [z,2;,...,z;] of k arbitrary values into

probabilities :
Cap Zwon Zgpa¥ 2y Zeoled Liyy
z=10.6,1.1,—1.5,1.2,3.2,—1.1]
softmax(z) = exp (1) exp (22) o exp (zx)

S exp(z) Yorqexp(z) Yo exp(z)

0.055,0.090, 0.006,0.099, 0.74,0.010]

ex (IS
F(@(}W&Wb}:. /P £)’

Zc

Softmax in multinomial logistic regression
exp (we - x+ be)
py=clx) = —

D exp(wj-x+b;)

j=1

Input is still the dot product between weight vector w
and input vector X, but now we need separate weight
vectors for each of the K classes.

Features in binary versus multinomial
logistic regression

Binary: positive weight
~J 1 1f “1”edoc ws = 3.0
%7 1 0 otherwise

Multinominal: separate weights for each class:

Feature Definition W5+ Ws5_ Wsg

* “"’
f5(x) {1 it Fedoc 55 51 53

O otherwise

How Does Learning Work?

Slides borrowed from Jurafsky & Martin Edition 3

Learning components

A loss function: Lesr (foss
° cross-entropy loss

Tocle—y
An optimization algorithm:

> stochastic gradient descent

Learning in Supervised Classification

Supervised classification:
« We know the correct label y (either 0 or 1) for each x.

« But what the system produces is an estimate, 3\/
We want to set w and b to minimize the distance between our
estimate f/(i) and the true yl.

« We need a distance estimator: a loss function or a cost
function

« We need an optimization algorithm to update w and b to
minimize the loss.

Loss Function

Intuition of negative log likelihood loss (cross-entropy loss):

We choose the parameters w,b that maximize

- the log probability X
« of the true y labels in the training data —
« given the observations x

)
Minimize e g eNL log pzroba(;;ln:1

Loss Function

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can express the
probability p(y|x) from our classifier as:

piylx) = 7 (1-9)'"

noting:
if y=1, this simplifies to 3\/
if y=0, this simplifies to 1- 3\/

Now take the log of both sides (mathematically handy)

Maximize: logp(y|lx) = log [yy(l_y)l—y]
ylogy+ (1 —y)log(1—3)

\

Loss Function

Goal: maximize probability of the correct label p(y|x)
Minimize the cross-entropy loss

Minimize: Lce(,y)=—logp(y|x) = —[ylogy+(1—y)log(1—y)]
Lce(y,y) = —|ylogo(w-x+b)+(1—y)log(l1—-o(w-x+b))]
For multi-class Lce(,y Zyklogyk

regression:

Learning components

A loss function:
> cross-entropy loss

An optimization algorithm:
> stochastic gradient descent

Stochastic Gradient
Descent

(Game

Optimizaton .. -

b q =5 smy
Goal: find weights + bias (W,b) that minimize loss. possible.

Let's make explicit that the loss function is parameterized by

weights 6=(w,b 9"'(\""5) W= fwy fv evasy
g (w,b) :

° And we’ll represent /)> as f (x; 0) to make the
dependence on 6 more obvious F(x:6)

We want the weights that minimize the loss, averaged over

all examples:
A

9; @vﬂwvnllm iLCE(F(X 6))j)

|z.]
for wm iges, X 15 fne W avd “:l P> ifs fobe]

Intuition of gradient descent

How do | get to the bottom of this river canyon?

Look around me 360:

Find the direction of
steepest slope down

Go that way

Our goal: minimize the loss

For logistic regression, loss function is convex
» A convex function has just one minimum

» Gradient descent starting from any point is

guaranteed to find the minimum
» (Loss for neural networks is non-convex)

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

\
0(/? : \W\'
\ «.‘WW‘ Loss ! Should we move
' ?
i 1' right or left from here: CUN‘O(
fundrens

A of fo

frd
Ylobt

g Wivipna

Gradients

The gradient of a function of many variables

IS a vector pointing in the direction of the
greatest increase in a function.

Gradient Descent: Find the gradient of the
loss function at the current point and move
in the opposite direction.

How much do we move in that direction ?

« The value of the gradient (slope)
weighted by a learning rate n

- Higher learning rate means we make a
bigger change to w at each step

. 9_'_/(‘“‘(;\10)) D)
Gradient: . 3

441 ‘ oL (FGsw),)

Weightupdate: w = - W

T

ledym
(0:‘ (@’m}

Now let's consider N dimensions

We want to know where in the N-dimensional
space (for N parameters in 8) we should go.

The gradient is a vector that expresses the
directional components of the sharpest slope
along each of the N dimensions.

c‘)b(P(XJG)\WP E 9,'1”"5"“');‘;)) AL(H(x; W)y j

>

(=4

)& o Wi e T
fo x weagpbts n W

Two dimensions: w and b

Cost(w,b)

Visualizing the
gradient vector
at the red point

It has two
dimensions
shown in the x-
v plane

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 0
where: L is the loss function
f is a function parameterized by 0
X 1s the set of training inputs x(l) x(x(
y is the set of training outputs (labels) y(1 (), s y(’")

2) . xm

60 :
repeat til done # see caption for N “aﬂ{
For each training tuple (x(9, y()) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?
W@ Compute §\) = f (x(i); 6) # What is our estimated output §?

o 0\\)@3‘ Compute the loss L(J .(") v\ # How far off is $(!) from the true output y(!)?
Mq“"” 2. g+ VoL(f(x19;0),y") # How should we move 6 to maximize loss?
N9 3.0<60 —ng # Go the other way instead

return 0 T ate Wﬂoﬂ\" dise o “6“0”“' L sdfraty

w_Cuitent Wiy _seuy

One pf o dem o gareser = epod

Hyperparameters e ser s ansde

The learning rate n is a hyperparameter
> too high: the learner will take big steps and overshoot
> too low: the learner will take too long

Hyperparameters:
« Briefly, a special kind of parameter for an ML model

« Instead of being learned by algorithm from
supervision (like regular parameters), they are
chosen by algorithm designer.

Overfitting

A model that perfectly match the training data
nas a problem.

t will also overfit to the data, modeling noise

> A random word that perfectly predicts y (it happens
to only occur in one class) will get a very high weight.

> Failing to generalize to a test set without this word.

A good model should be able to generalize

Overfitting

Useful or harmless features
This movie drew me
X1 = "this"

in, and it'll do the 4+ X5 — "movie
same to you. X3 = "hated"
X4 ="drew me In"

| can't tell you how

much | hated this = X5 = "the same to you"
movie. It sucked. X7 = "tell you how much"

"Memorizing" the training data can cause problems

Overfitting

4-gram model on tiny data will just memorize the data
> 100% accuracy on the training set

But it will be surprised by the novel 4-grams in the test data
> Low accuracy on test set

Models that are too powerful can overfit the data
o Fitting the details of the training data so exactly that the
model doesn't generalize well to the test set

> How to avoid overfitting?

o Regularization in logistic regression
o Dropout in neural networks

Logistic Regression Example:
Pet Picture Classification

Building a Model

Tensorflow is a Python library, but most functions are
implemented in C (so they are fast!).

Tensorflow provides useful abstractions for models:

tensor: n-dimensional container for data

layer: apply functions to an input tensor of n
dimensions to produce an output tensor of m
dimensions.

model: consist of layers connected together

optimizer: an optimization function used to computes
weight updates

Training

Train the model

epochs = 50

callbacks = [
keras.callbacks.ModelCheckpoint("save_at_{epoch}.h5"),
]

model. compile(< ‘ZMVNW] (fe

optimizer=keras.optimizers.Adam(1le-3),
loss="binary_crossentropy",
metrics=["accuracy"],

)

model. fit(

train_ds, epochs=epochs, callbacks=callbacks, validation_data=val_ds,
)

