CS 232: AI

Spring 2024

Prof. Carolyn Anderson
Wellesley College

Reminders

- Need to move and shorten my Friday help hours to 3-3:45
- Mid-semester updates with late days count coming soon
\uparrow Buy-one-get-three free policy on late days for this week

YLLATAILY Discussion

Misinformation
Data gathering / data privacy
Headlines that
Too Good To Be True
personify A_{1}
Drawing on the last two chapters of
YLLATAILY, come up with some rules of thumb for identifying misleading AI headlines

Trying to scare you

Task is to u general
Task may hove undviniry biases

Responsibility
shifting from
humans to system

YLLATAILY Discussion

Neural Networks

This is a brain

This is a brain

This is not your brain

https:/ / github.com/jessevig/bertviz
It's a large language model (neural network)

Neural Network Unit
This is not in your brain

Units in Neural Networks

Neural unit

$$
\begin{aligned}
& z=\left(\sum_{i} w_{i} x_{i}\right)+b \\
& z=w x+b
\end{aligned}
$$

$$
y=f(z) \quad f \text { culd be } \sigma
$$ or salkthnry ase

Non-Linear Activation Functions

We're already seen the sigmoid for logistic regression:

Sigmoid

Final function computed by a single unit

Spot the differences

Neural Network Unit

$$
\begin{aligned}
& z=b+\sum_{i=1}^{n} w_{i} x_{i} \\
& y=f(w x+b)
\end{aligned}
$$

Logistic Regression

$$
\begin{aligned}
& z=\left(\sum_{i=1}^{n} w_{i} x_{i}\right)+b \\
& p(y=1 \mid x)=\sigma(w x+b)
\end{aligned}
$$

Final unit again

Non-Linear Activation Functions besides sigmoid

tanh

$$
y=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}
$$

ReLU
Rectified Linear Unit

$$
y=\max (z, 0)
$$

Example: XOR

The XOR problem

Can neural units compute simple functions of input?

AND		OR			XOR		
x1 x2	y	x1	x2	y	x 1	x2	y
0 0	0	0	0	0	0	0	0
-1	0	0	1	1	0	1	1
10	0	1	0	1	1	0	1
11	1	1	1	1	1	1	0

Perceptrons: a very simple unit

A very simple neural unit

- Binary output (0 or 1)

A simple thresholding output function in place of sigmoid:

$$
y= \begin{cases}0, & \text { if } \mathbf{w} \cdot \mathbf{x}+b \leq 0 \\ 1, & \text { if } \mathbf{w} \cdot \mathbf{x}+b>0\end{cases}
$$

Solving AND

Deriving AND

$$
y=\left\{\right)
$$

Goal: return 1 if x 1 and x 2 are 1

Deriving AND

$$
\begin{aligned}
w_{1}+w_{2}+6 & >0 \\
w_{1}+6 & \leq 0
\end{aligned}
$$

Goal: return 1 if x 1 and x 2 are 1 $w_{2}+6 \leq 0$

Exercise: solving OR

$$
\begin{aligned}
& y= \begin{cases}0 & \text { it } z \leq 0 \\
1 & \text { it } z>0\end{cases} \\
& \text { OR }
\end{aligned}
$$

Deriving OR

$$
y= \begin{cases}0, & \text { if } \mathbf{w} \cdot \mathbf{x}+b \leq 0 \\ 1, & \text { if } \mathbf{w} \cdot \mathbf{x}+b>0\end{cases}
$$

OR

Goal: return 1 if either input is 1

Deriving OR

Goal: return 1 if either input is 1

solving XOR

Trick question!
It's not possible to capture XOR with perceptrons

Why? Perceptrons are linear classifiers

Perceptron equation is the equation of a line
$\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}+\mathrm{b}=0$

This line acts as a decision boundary

- 0 if input is on one side of the line
- 1 if on the other side of the line

Decision boundaries

Solution to the XOR problem

XOR cant be calculated by a single perceptron XOR can be calculated by a layered network of units.

The hidden representation h

$$
\begin{aligned}
& h_{1}=O R \\
& h_{2}=A N D
\end{aligned}
$$

Feedforward Networks

Binary Logistic Regression as a 1-layer Network
(we don't count the input layer when counting layers!)

Multinomial Logistic Regression as a 1-layer Network
Fully connected single layer network

