CS 232: AI

Spring 2024

Prof. Carolyn Anderson Wellesley College

Reminders

- ♦ Need to move and shorten my Friday help hours to 3-3:45
- Mid-semester updates with late days count coming soon
- ✦ Buy-one-get-three free policy on late days for this week

YLLATAILY Discussion

Mism formation

Drawing on the last two chapters of YLLATAILY, come up with some rules of thumb for identifying misleading AI headlines

YLLATAILY Discussion

Neural Networks

This is a brain

estimated to have 100 trillion synapses connecting 100 billion neurons

This is a brain

https://commons.wikimedia.org/w/index.php?curid=28761830

This is not your brain

https://github.com/jessevig/bertviz

It's a large language model (neural network)

contemporary models have billions of parameters (GPT3: 175 billion)

Units in Neural Networks

Neural unit

$$Z = \left(\sum_{i} W_{i} X_{i} \right) + b$$

z = WX + b y = F(z) $f \quad could be \sigma$ or solverming else

Non-Linear Activation Functions

1.0

We're already seen the sigmoid for logistic regression:

Sigmoid ^{0.8} $y = 1/(1+e^{-z})$ ^{0.4} $y = \frac{1}{2}$ 0.4 0.6 $y = \frac{1}{2}$ 0.6 0.6 $y = \frac{1}{2}$ 0.60.

8

Final function computed by a single unit

Spot the differences

Neural Network Unit

$$z = b + \frac{x_i}{2} \frac{x_i}{z}$$

$$y = f(wx+b)$$

Logistic Regression

$$Z = \left(\begin{array}{c} y \\ z \\ z \end{array} \right) \left(\begin{array}{c} y \end{array} \right) \left(\begin{array}{c} y \\ z \end{array} \right) \left(\begin{array}{c} y \end{array} \right) \left(\begin{array}{c} y \\ z \end{array} \right) \left(\begin{array}{c} y \end{array} \right) \left(\begin{array}{c}$$

Final unit again

Non-Linear Activation Functions besides sigmoid

tanh

$$y = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

ReLU Rectified Linear Unit y = max(z, 0) Example: XOR

The XOR problem

Minsky and Papert (1969)

Can neural units compute simple functions of input?

AND			OR				XOR		
x 1	x 2	у	x 1	x 2	у	x 1	x2	y	
0	0	0	0	0	0	0	0	0	
0	1	0	0	1	1	0	1	1	
1	0	0	1	0	1	1	0	1	
1	1	1	1	1	1	1	1	0	

Perceptrons: a very simple unit

A very simple neural unit

- Binary output (0 or 1)
- A simple thresholding output function in place of sigmoid:

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \leq 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

Solving AND

Deriving AND

Goal: return 1 if x1 and x2 are 1

Deriving AND $M \neq w_2 \neq 0$ $w_1 \neq 6 \leq 0$ Goal: return 1 if x1 and x2 are 1 $w_2 \neq 6 \leq 0$

Deriving OR

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases} \qquad \begin{array}{c} OR \\ \hline \mathbf{x1} \quad \mathbf{x2} \quad \mathbf{y} \\ \hline \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \\ \mathbf{0} \quad \mathbf{0} \\ 1 \quad 1 \\ 1 \quad \mathbf{0} \\ 1 \quad 1 \\ 1 \quad 1 \\ \end{array}$$

Deriving OR

Goal: return 1 if either input is 1

solving XOR

XOR							
x 1	x 2	y					
0	0	0					
0	1	1					
1	0	1					
1	1	0					

Trick question! It's not possible to capture XOR with perceptrons

Why? Perceptrons are linear classifiers

Perceptron equation is the equation of a line $w_1x_1 + w_2x_2 + b = 0$

This line acts as a **decision boundary**

- 0 if input is on one side of the line
- 1 if on the other side of the line

Decision boundaries

Solution to the XOR problem

XOR can't be calculated by a single perceptron XOR can be calculated by a layered network of units.

$$h_1 = OR$$

 $h_2 = AND$

Feedforward Networks

Binary Logistic Regression as a 1-layer Network

(we don't count the input layer when counting layers!)

Multinomial Logistic Regression as a 1-layer Network Fully connected single layer network $y = \text{soft max}(W \times + 6)$ pos Butput leyer has n nocles where n is number of NEG is a verter NEUT of predictions 5 S S Chasses W is a matrix ω f N × X 41 X X X 2 vector i5