
Prof. Carolyn Anderson
Wellesley College

CS	232:		
Arti+icial	Intelligence Spring	2024

Reminders
✦ Buy-1-get-3	late	day	sale	on	HW	5	
✦ Progress	updates	sent	yesterday	did	not	include	
late	days	for	HW	5	(unless	you've	already	
submitted	it)	

✦ Mid-semester	feedback

My help hours from 3 3 45

Recap

Spot	the	differences
Neural	Network	Unit Logistic	Regression

could be sigmoidor sigmoid forbinaryclassificatesoftman
softenax formulti classb t could also be

Reluartann

5

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Weights
Input layer

Weighted sum

Non-linear activation function

Output value

bias

Neural	Network	Unit

Feedforward	Networks

8

xnx1

! = "(# ∙ $ + %)

+1

w1 wn b

Prediction y is a scalar
σ

Output layer
(σ node)

Input layer
(X is a vector)

Weights
W (vector) (scalar)

Binary	Logistic	Regression	as	a	1-layer	Network
(we	don't	count	the	input	layer	when	counting	layers!)

0 sigmoid

Multinomial	Logistic	Regression	as	a	1-layer	Network

9

xnx1

Fully	connected	single	layer	network
! = softmax(&$ + %)

+1

y is vector of
predictions

y1 yn

b (vector)

ss s
Output layer
(softmax nodes)

Weights W
(matrix)

Input layer
(X is a vector)

0 softmax

Two-Layer	Network	with	scalar	output

U

W

xnx1 +1

b
σ could be ReLU
or tanh

y is a scalarz = 'h
! = "(()

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

Two-Layer	Network	with	softmax	output

xnx1 +1

Could be ReLU
Or tanh

y is a vector
z = 'h
! = softmax(()

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node) U

W b

Multi-layer	Notation

W[1]

xnx1 +1

b[1]

i

j

W[2] b[2]

([1] = & [1])[0] + %[1]

)[0]

)[1] = *[1](([1])

([2] = & [2])[1] + %[2]
)[2] = *[2](([2])

! =)[2] sigmoid or softmax

ReLU

Replacing	the	bias	unit

Let's	switch	to	a	notation	without	the	bias	unit	
(a	notational	change):	
1. Add	a	dummy	node	a0=1	to	each	layer	
2. Its	weight	w0	will	be	the	bias	
3. So	input	layer	a[0]0=1,		

◦ And	a[1]0=1	,	a[2]0=1,…

Replacing	the	bias	unit

Instead	of:	 	 	 	 	 We'll	do	this:

x= x1, x2, …, xn0 x= x0, x1, x2, …, xn0

Replacing	the	bias	unit

x1 x2

y1

xn0…

…

+1

b

…
U

W

y2 yn2

h1 h2 h3 hn1

x1 x2

y1

xn0…

…

x0=1

…
U

W

y2 yn2

h1 h2 h3 hn1

Instead	of:	 	 	 													We'll	do	this:

Using	feedforward	
networks

Use	cases	for	feedforward	networks

Let's	revisit	sentiment	analysis	with	feedforward	
networks	(state-of-the-art	systems	use	more	powerful	
architectures).

21

Classi+ication:	Sentiment	Analysis
We	could	do	exactly	what	we	did	with	logistic	
regression	
Input	layer	are	binary	features	as	before	
Output	layer	is	0	or	1

U

W

xnx1

σ

Sentiment	Features

23

Feedforward	nets	for	simple	classi+ication

Just	add	a	hidden	layer	to	logistic	regression!	
This	allows	the	network	to	use	non-linear	interactions	
between	features	(which	hopefully	improves	performance).	

24

xnx1

f1 f2 fn

xnx1

f1 f2 fn

Logistic
Regression

2-layer
 feedforward
 network

σ
σ treat as

intensifier

Even	better:	representation	learning

The	real	power	of	deep	learning	comes	from	the	
ability	to	learn	features	from	the	data,	instead	of	
using	hand-built	human-engineered	features	for	
classification.	

We'll	pick	up	on	this	after	spring	break.

25

Training	a	Neural	Network

Intuition:	training	a	2-layer	Network

27

xnx1

System output !̂
Actual answer !

Training instance

Loss function L()!̂, !

0 Backward

Forward
Pass

pass

Intuition:	training	a	2-layer	Network

28

xnx1

System output !̂
Actual answer !

Training instance

Loss function L()!̂, !

Forward pass

Backward pass

h

Intuition: Training a 2-layer network

For	every	training	tuple	 	
◦ Run	forward	computation	to	find	our	estimate	 	
◦ Run	backward	computation	to	update	weights:		
◦ For	every	output	node	

◦ Compute	loss	 between	true	 	and	the	estimated	 	
◦ For	every	weight	 from	hidden	layer	to	the	output	layer	
◦ Update	the	weight

◦ For	every	hidden	node	
◦ Assess	how	much	blame	it	deserves	for	the	current	answer	
◦ For	every	weight	 from	input	layer	to	the	hidden	layer	
◦ Update	the	weight

($, !)
!̂

+ ! !̂

30

Loss	Function:	a	measure	of	how	far	off	the	
current	answer	is	from	the	right	answer.
For	binary	logistic	regression,	we	use	cross	
entropy	loss:

32

For	multinomial	classification,	we	use	cross	
entropy	loss:

1

Gradient	descent	for	weight	updates

The	derivative	of	the	loss	function	with	respect	to	weights	
tells	us	how	to	adjust	the	weights	to	make	better	predictions.	
Derivative	of	the	loss	function:		

We	want	to	move	the	weights	in	the	opposite	direction	of	the	
gradient:		

For	logistic	regression:

differs
Wtt We y 11029

0

1 510 15 g
G w 6 g

Where	did	that	derivative	come	from?

35

Each	node	takes	an	upstream	gradient,	multiplies	it	by	the	local	
gradient	(the	gradient	of	its	output	with	respect	to	its	input),	and	
uses	the	chain	rule	to	compute	a	downstream	gradient	to	be	
passed	on	to	a	prior	node.		
A	node	may	have	multiple	local	gradients	if	it	has	multiple	inputs.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Fun

want
10
gradient

The	chain	rule

Computing	the	derivative	of	a	composite	function:	

f	(x) = u(v(x))

f	(x) = u(v(w(x)))
	

Where	did	that	derivative	come	from?

37

Each	node	takes	an	upstream	gradient,	multiplies	it	by	the	local	
gradient	(the	gradient	of	its	output	with	respect	to	its	input),	and	
uses	the	chain	rule	to	compute	a	downstream	gradient	to	be	
passed	on	to	a	prior	node.		
A	node	may	have	multiple	local	gradients	if	it	has	multiple	inputs.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Why	Computation	Graphs
For	training,	we	need	the	derivative	of	the	loss	with	respect	to	
each	weight	in	every	layer	of	the	network.	

Problem:	the	derivatives	on	the	prior	slide	only	give	the	
updates	for	one	weight	layer:	the	last	one,	since	loss	is	
computed	only	at	the	very	end	of	the	network!		

Solution:	error backpropagation (Rumelhart,	Hinton,	Williams,	
1986)		

• Backprop is a special case of backward	differentiation

38

Can	we	get	back	to	cat	pics,	please?
Finally,	we’re	ready	to	power	up	our	supervised	cat/
dog	classifier	by	adding	more	layers.	This	takes	it	
from	a	regression	model	to	a	neural	network.

Adding	More	Layers

New	Architecture

Computation	Graphs

Why	Computation	Graphs
For	training,	we	need	the	derivative	of	the	loss	with	respect	to	
each	weight	in	every	layer	of	the	network.	
Problem:	the	derivatives	on	the	prior	slide	only	give	the	
updates	for	one	weight	layer:	the	last	one,	since	loss	is	
computed	only	at	the	very	end	of	the	network!		
Solution:	error backpropagation (Rumelhart,	Hinton,	Williams,	
1986)		

• Backprop is a special case of backward	differentiation	
• Which	relies	on	computation graphs.	

43

Computation	Graphs

A	computation	graph	represents	the	process	of	
computing	a	mathematical	expression

44

Computations:
3 d 26

d
i

e atd
I

L Ce

Forward pass

Computation	Graphs

A	computation	graph	represents	the	process	of	
computing	a	mathematical	expression

45

e=a+d

d = 2b L=ce

a

b

c

Computations:

46

Computations:

Computation	Graphs

Backwards	differentiation	in	computation	graphs

The	importance	of	the	computation	graph	comes	
from	the	backward	pass	
This	is	used	to	compute	the	derivatives	that	we’ll	
need	for	the	weight	update.	

The	chain	rule

Computing	the	derivative	of	a	composite	function:	

f	(x) = u(v(x))

f	(x) = u(v(w(x)))
	

The	chain	rule

Computing	the	derivative	of	a	composite	function:	

f	(x) = u(v(x))

f	(x) = u(v(w(x)))
	

Example

50

t.ee

0 e

e an
a l

d 26 2

Example

52

Summary
For	training,	we	need	the	derivative	of	the	loss	with	
respect	to	weights	in	early	layers	of	the	network		
• But	loss	is	computed	only	at	the	very	end	of	the	

network!		
Solution:	backward	differentiation	
Given	a	computation	graph	and	the	derivatives	of	all	the	
functions	in	it	we	can	automatically	compute	the	
derivative	of	the	loss	with	respect	to	these	early	weights.

53

