CS 232:

Spring 2024
Artificial Intelligence PETG

Prof. Carolyn Anderson
Wellesley College

Reminders

*

+ Buy-1-get-3 late day sale on HW 5

+ Progress updates sent yesterday did not include
late days for HW 5 (unless you've already
submitted it)

+ Mid-semester feedback

* My g Vs feon S35

Recap

Spot the differences

Neural Network Unit Logistic Regression

z=2D> Zwixi 7 = (zn:w,-xi) +b
i i=1

y=0(W-x+b) Py=1) = o(w-x+b)
T cond e Sy Siqmdd $r binaroy clessifra,
Sofmy,)
boc covd o e Softomax o ot —closs

Relo o toih

Neural Network Unit

Output value vy

Non-linear activation function

Weighted sum

Weights = w;,
Input layer = Xy Xo X3 1

Feedforward Networks

Binary Logistic Regression as a 1-layer Network

(we don't count the input layer when counting layers!)

Output layer Prediction y is a scalar

(0 node) y=oc(wex+Db)

o = s'ri]W\o"U(

Weights
W (vector) Wj

Input layer ‘

(X is a vector)

b (scalar)

Multinomial Logistic Regression as a 1-layer Network

Fully connected single layer network

y = softmax(Wx + b)

Output layer YI ¥n v is vector of

(softmax nodes)

N “." predictions
Weights W)';"‘:@\\ o = Softmex
(matrix) /" \ b (vector)

Input layer
(X is a vector)

Two-Layer Network with scalar output

Output layer
(0 node) U

hidden units

(0 node) W

Input layer
(vector)

y=o0(z)
2 = [y Yisascalar

h=o0(Wx+b)

o could be RelLU
b or tanh

Two-Layer Network with softmax output

y = softmax(z)

Output layer 7 = Uh

(0 node) U y is a vector
hidden units h=0o(Wx+Db)
(O' node) Could be ReLU

b Or tanh

W

Input layer
(vector)

Multi-layer Notation

y = ql2l sigmoid or softmax

N

W2l a? = gPl(zP)
bl o _ e 4+ pl2]

alll = glll(zll) ReLU
L1 — 14101 4 pll]

0]

Replacing the bias unit

Let's switch to a notation without the bias unit
(a notational change):

Add a dummy node a,=1 to each layer
[ts weight w, will be the bias
So input layer al0l,=1,

And allly=1, al?14=1,...

Replacing the bias unit

Instead of: We'll do this:
X— X1, X2y veey X0 X— X0, X1, X2y ooy Xp0
h = O'(Wx—l—b) h = O'(WX)

n no
h]:()'<20:wﬂxl—|—b]> G(Zwﬂxl)
i=0

i=1

Replacing the bias unit

Instead of: We'll do this:

Using feedforward
networks

Use cases for feedforward networks

Let's revisit sentiment analysis with feedforward
networks (state-of-the-art systems use more powerful
architectures).

Classification: Sentiment Analysis

We could do exactly what we did with logistic
regression

Input layer are binary features as before

Output layeris 0 or 1
O

Sentiment Features

Var Definition
x;1 count(positive lexicon words € doc)
x; count(negative lexicon words € doc)
. { 1 if “no” € doc
0 otherwise
x4 count(1st and 2nd pronouns € doc)
{ 1 if “!” € doc
X5 .
0 otherwise
x¢ log(word count of doc)

Feedforward nets for simple classification

Logistic 2-layer Yeeok | o
Regression feedforward | s
network

f, f,
f, £ fy
Just add a hidden layer to logistic regression!

This allows the network to use non-linear interactions
between features (which hopefully improves performance).

Even better: representation learning

The real power of deep learning comes from the
ability to learn features from the data, instead of

using hand-built human-engineered features for
classification.

We'll pick up on this after spring break.

Training a Neural Network

[ntuition: training a 2-layer Network

Training instance

[ntuition: training a 2-layer Network

d)"i“;})
.

).
Forward pass =P v'§“/‘
BZZ0N

Training instance

Intuition: Training a 2-layer network

For every training tuple (x, y)
Run computation to find our estimate 3\/

Run computation to update weights:

For every output node
Compute loss L between true y and the estimated 3\/

For every weight w from hidden layer to the output layer
Update the weight
For every hidden node
Assess how much blame it deserves for the current answer

For every weight w from input layer to the hidden layer
Update the weight

\

LLoss Function: a measure of how far off the
current answer is from the right answer.

For binary logistic regression, we use cross
entropy loss:

Lce(9,y) = —logp(ylx) = —|[ylogy+(1—y)log(1—3)]
Lce(9,y) = —|ylogo(w-x+b)+(1—y)log(l—o(w-x+b))]

For multinomial classification, we use cross
entropy loss:

Lce(9,y) = —log —% ' (where i is the correct class)

Gradient descent for weight updates

The derivative of the loss function with respect to weights
tells us how to adjust the weights to make better predictions.

Derivative of the loss function: ~ dL (#{ %;67,4)

T dw
We want to move the weights in the opposite direction of the

gradient: ILCE(x; 604
W%-H = \Ne = Y - ”
IVeN
For logistic regression: che(:s,‘{J x,6) . (%—‘13%{

aw; = G.CW)(+6) "j))(:

Where did that derivative come from?

oL
O W,
_ - 0 N
\ JO<\/@
oL dL . a0 Jo ov greowm
oh Jo O oh 00 gpodn
locd
%,‘@(AM"

Each node takes an upstream gradient, multiplies it by the local
gradient (the gradient of its output with respect to its input), and
uses the chain rule to compute a downstream gradient to be
passed on to a prior node.

A node may have multiple local gradients if it has multiple inputs.

The chain rule

Computing the derivative of a composite function:

d_f du dv

) = u(vix) dx dv dx

df du dv dw

f(x)=u(v(w(x))) T 2y dw dx

Where did that derivative come from?
d e

d /ﬁ_/@
oL _oL ge 2e aL
od e ad ad oe
downstream local upstream
gradient gradient gradient

Each node takes an upstream gradient, multiplies it by the local
gradient (the gradient of its output with respect to its input), and
uses the chain rule to compute a downstream gradient to be
passed on to a prior node.

A node may have multiple local gradients if it has multiple inputs.

Why Computation Graphs

For training, we need the derivative of the loss with respect to
each weight in every layer of the network.

Problem: the derivatives on the prior slide only give the

updates for one weight layer: the last one, since loss is
computed only at the very end of the network!

Solution: error backpropagation (Rumelhart, Hinton, Williams,
1986)

Backprop is a special case of backward differentiation

Can we get back to cat pics, please?

4

Finally, we're ready to power up our supervised cat/
dog classifier by adding more layers. This takes it
from a regression model to a neural network.

Adding More Layers

def make_model(input_shape, num_classes):
inputs = keras.Input(shape=input_shape)
x = layers.Flatten() (inputs)
hl = layers.Dense(1000) (x)
h2 = layers.Dense(500, activation="relu") (hl)
if num_classes == 2:
activation = "sigmoid"

units = 1
else:
activation = "softmax"

units = num_classes
outputs = layers.Dense(units, activation=activation) (h2)
return keras.Model(inputs, outputs)

model = make_model(input_shape=image_size, num_classes=2)
keras.utils.plot_model(model, show_shapes=True)

New Architecture

input: | [(None, 180, 180)]
output: | [(None, 180, 180)]

input_1 | InputLayer

input: | (None, 180, 180)
output: (None, 32400)

flatten | Flatten

input: | (None, 32400)
output: (None, 500)

dense 1 | Dense

input: | (None, 500)

dense 2 | Dense

output: (None, 1)

Computation Graphs

Why Computation Graphs

For training, we need the derivative of the loss with respect to
each weight in every layer of the network.

Problem: the derivatives on the prior slide only give the
updates for one weight layer: the last one, since loss is
computed only at the very end of the network!

Solution: error backpropagation (Rumelhart, Hinton, Williams,
1986)

Backprop is a special case of backward differentiation

Which relies on computation graphs.

Computation Graphs

A computation graph represents the process of
computing a mathematical expression

L(a,b,c) = c(a+2b) Computations:
é 5 d= 2b
d @ e T 8‘\"1
' s> o L~ ce
@ d-24 L=ce

-2
[
Q - Fovwad Pass

e

Computation Graphs

A computation graph represents the process of
computing a mathematical expression

L(a,b,c) = c(a+2b) Computations:
d = 2xb

_ e = a+d
L = cxe

Computation Graphs

L(a,b,c) = c(a+2b) Computations:
d = 2%b
forward pass e = a+d

e=5 L = cxe

Backwards differentiation in computation graphs

The importance of the computation graph comes
from the backward pass

This is used to compute the derivatives that we’ll
need for the weight update.

The chain rule

Computing the derivative of a composite function:

) =uvx) _2F _do v

—

d x - PN &y

f (x) = oF L v &
Wty 22

The chain rule

Computing the derivative of a composite function:

d_f du dv

) = u(vix) dx dv dx

df du dv dw

f(x)=u(v(w(x))) T 2y dw dx

oL

Era
backward pass

Summary

For training, we need the derivative of the loss with
respect to weights in early layers of the network

* Butloss is computed only at the very end of the
network!

Solution: backward differentiation

Given a computation graph and the derivatives of all the
functions in it we can automatically compute the
derivative of the loss with respect to these early weights.

