CS 232: Artificial Intelligence

Spring 2024

Prof. Carolyn Anderson Wellesley College

Reminders

- Reading for Tuesday: <u>Illustrated Stable Diffusion blog</u> <u>post</u>
- Reading for Friday: Chiang (2023)
- Tensorflow version compatibility issues: check email I sent for how to downgrade Tensorflow to 2.13
 pip instal feasing formers
- My help hours today: 3:30-4:30
- My help hours Monday: 4-5:15
- Lyra's Sunday help hours: 4-6

New Policy: Earn Bonus Late Days

You can earn bonus late days by attending a research talk. To be eligible:

- The talk must be on CS research or on research related to AI
- The talk must be live, not recorded (so you can ask questions)
- You must write a paragraph about the talk and what you learned and email it to me.

Upcoming Talks

Upcoming Talks

Christine Doran

Clockwork Language Verified email at clockworklanguage.com Corpus linguistics evaluation dialogue

Catherine Chen PhD Candidate at Brown University

Dr. Rachel Lomasky

DIRECTOR OF MACHINE LEARNING | MANIFOLD

Dr. Rachel Lomasky is Director of Machine Learning at Manifold, where she helps clients train and productionalize their machine learning algorithms.

Prior to Manifold, she was co-founder and Chief Data Officer of WEVO Conversion, a platform for digital marketers that uses AI to improve websites and search **Representation Learning**

How Do We Represent Text?

In the next homework assignment, you will try to improve our recipe classifier using neural networks instead of regression.

To feed text into a neural network, we need to turn it into numbers. In our regression classifier, we did this by **hand-crafting features**.

Representation Learning

From now on, we're going to use neural networks to **learn representations** for us.

Representation Learning: a machine learning technique for extracted features (informative aspects) from data.

Word Vectors

Idea: a word's meaning is based on its **distance** from other word meanings.

Each word = a vector (not just "good" or " w_{45} ")

Similar words are "nearby in semantic space"

We build this space automatically by seeing which words are **nearby in text**

Word Embeddings

Which of these word pairs are most alike?

sun	- moon	ſ	Celestiol bright No	in the sk	5	
sun	- lightbulb	5				
sun	- mystical	2				
moon	lightbulb	3				
moon -	mystical	4	nights = twilight	ne Mare Supre	maturel	folklore
mystic	al lightbu	alb 💧				

Word Embeddings

Imagine defining a large number of ways that words can be similar (*dimensions*). Maybe around 2000 ways?

Word Embeddings

If we have good word embeddings, their geometric relationships should be meaningful:

https://www.cs.cmu.edu/~dst/WordEmbeddingDemo

Neural Networks with Word Embedding Features

Neural Net Classification with embeddings as input features!

Neural Net Classification with embeddings as input features!

Issue: texts come in different sizes

Issue: texts come in different sizes

This assumes a fixed size length (3)!

Some simple solutions (more sophisticated solutions later)

•••

The

 w_1

embedding for

word 534

🌔 • • 🔴 • • 🔴 🗡

embedding for

word 23864

dessert

 W_2

embedding for

word 7

is

W₃

- 1. Make the input the length of the longest review
 - If shorter then pad with zero embeddings
 - Truncate if you get longer reviews at test time
- 2. Create a single "sentence embedding" (the same dimensionality as a word) to represent all the words
 - Take the mean of all the word embeddings
 - Take the element-wise max of all the word embeddings
 - For each dimension, pick the max value from all words

Solution 2: Average the word embeddings

Revisiting Our Classifier

 $https://www.tiktok.com/@chelseaparlettpelleriti/video/7072586373064248622? is from_webapp = 1 \& sender_device = pc \& web_id = 7159271848050869802 \\ id = 715927184802 \\ id = 715927184802 \\ id = 71592718400 \\ id = 7$

AI Tasks

Search

Uninformed Search Informed Search Adversarial Games Navigation Learning Under

Uncertainty

Classification

Regression

Sentiment Analysis

Neural Networks

Image Classification

Text Classification

Generation

Language Models

Image Generation

Chatbots

Finetuning

Prompt Engineering

We're moving into generation!

Language Modeling (Text Generation)

Neural Net Classification with embeddings as input features!

Language Generation

So far we have used language models to predict the next word in a sequence and estimate the probability of a sentence.

How do we **generate** sentences?

Language Generation

We sample words according to their estimated probabilities:

P(english | want) = .0011P(chinese | want) = .0065P(to | want) = .66 $P(eat \mid to) = .28$ P(food | to) = 0P(want | spend) = 0P(i | <s>) = .25

Language Generation

- Start the sentence
- Sample a next word according to its probability
- 1g! jepresent beginning of sentence (s> I b) vaguess I want b) Keep going! want to to eat eat Chinese Chinese food food </s> I want to eat Chinese food