CS 232: Artificial Intelligence

Spring 2024

Prof. Carolyn Anderson Wellesley College

Reminder

- No class Friday: I'm giving an invited talk at a symposium at Washington University.
 I'll post a recorded video lecture tomorrow.
- * HW8 extended to Tuesday due to MarMon
- My help hours: Thursday 9-10am and Monday
 4-5:15 (even though it's MarMon)
- * Lyra has normal help hours on Sunday
- * Lepei is moving her help hours to next Tuesday

Bonus Late Day Opportunity

AI for Wireless and Wireless for AI: A Tale of Two AIs

4-5pm April 23rd

Francesco Restuccia Northeastern University

Bonus Late Day Opportunities

Session 1: The Human-Computer-Interaction Lab: Remote Collaboration, AI and Camera Configuration

Session 2: Laboratory for Ethics, Equity, and Digital Technology: Exploring the Ethical Landscape of Digital Technology and Databases

Session 3: Learning About Machine Learning

Session 4: Exploring News, Search Engines, Online Advertisements, & Causal Relationships in Data-Oriented Honors Theses

How Tech Giants Cut Corners to Harvest Data for A.I.

In late 2021, <u>OpenAI</u> faced a supply problem.

A Better Solution: Attention

Attention mechanisms allow language models to give more weight to certain words when predicting the next word.

What is attention?

 $a = \operatorname{softmax}(r)$

Why dot product?

- * Dot product provides a measure of similarity between keys and queries.
- * But you might be wondering: *why do we want to pay attention to words that are similar to the current word?*

Consider:

My brother, a chemist, was late yesterday because he missed the bus. When he arrived, he was surprised to find that his lab _____

lab

lab

Lab Assignment
Review available resources on the web: http://www.sonoma.edu/users/f/farahman/sonoma/projects/ca/labviewindex.htm
Incluse Lab 1: Introduction to LabVIEW A- Read Introduction regionstemin 1983/Janest - Ib- Follow the steps up to Perfulfe Tool Section. In this lab you create a VI to calculate um and average of several numbers. C- When you complete the code show it to the instructor. D- If you have exit time, you can asthet working on the homework (see below).
Homework: The homework assignment must be done individually. If you copy the program from another student, both of you will receive zero for this assignment.
Watch the video (30 min. only): http://www.ni.com/swf/presentation/us/labview/aap/default.htm
Assignment 1: Create a simple program that can convert a temperature from the Celsius scale to the Fahrenheir scale. <u>http://www.cs.utexas.edu/~scottm/firstbytev(lab).htm</u> . Take a snap shot of the Front panel and Diagram. Place the figures in the table below.
Snap shot here!
Figure 1. Front Panel VI for Temperature Converter.
Snap snot nere: Figure 1. Block Diagram for Temperature Converter.
Assignment 2: Change the code below such that the program generates random numbers between 1-10. Make sure your program works properly. Test if for several values. Take a snap shot of the Front parel and Diagram. Pikes the figures in the table below.
Snap shot here!
Figure 1. Front Panel VI for Random Number Generator.

Attention mechanisms in neural language models

We use the attention distribution to compute a weighted average of the hidden states.

Intuitively, the resulting attention output contains information from hidden states that received high attention scores

Attention with Legos

Self-attention

[Vaswani et al. 2017]

Values: Wy Keys: Wk Queries: Ng

Self-attention

Self-attention

Self-attention

Self-attention

Self-attention

Self-attention

[Vaswani et al. 2017]

Multi-head self-attention

Slides by Emma Strubell! [Vaswani et al. 2017] Multi-head self-attention

Transformers

Output **Probabilities** Now, we have cross attention, Softmax which connects the decoder to the encoder by enabling it to Linear attend over the encoder's final Add & Norm hidden states. Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward N× Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Inputs Outputs (shifted right)

After stacking a bunch of these decoder blocks, we finally have our familiar Softmax layer to predict the next English word

Homework Tour