ASK ME ANYTHING

TUES JAN 30 | 3:30-4:30 | HCI LAB
with CS department co-chairs Orit and Sohie

ask a question here...

Fruit and dessert will be provided, so come ask Orit and Sohie your burning questions.
ALL students are welcome!!
Reminders

- Homework 2 will be released today
- Lepei has help hours Wednesday 12-2pm (Zoom)
- I have help hours Friday from 3:30-4:30pm
- Reading for next Tuesday: YLLATAILY Chapter 3-4
YLLATAIL Chapters 1-2
YLLATAILY Chapters 1-2

Signs of All Doom

* Learning From Flawed Data
* The Problem Is Too Hard
* Sneaky Shortcuts
* The Problem is Not What We Thought
Example Tasks

- Self-driving cars
- Recipe generation
- Résumé screening
- Cockroach farming
- Tic-tac-toe
- Image recognition
- Joke generation
- Super Mario
- Writing news articles

- bias in person detection
 - flawed data
 - problem is too hard
 -防晒霜
taking shortcuts - run to everywhere
- problem is too hard

- sneaky shortcuts
- agent versus environment
- sneaky shortcuts & flawed data
- problem is too hard
Big Ideas

Rule-based programming

- Pro: we understand the rules the program is using
- Con: we have to write the rules

Supervised learning

- Pro: AI generates its own rules
- Con: hard to understand why it's doing what it's doing
Big Ideas

AI Weaknesses

- Remembering things
- Planning ahead
- Data- and computation-intensive
Recap
Agent Complexity

Problem-solving agent: capable of considering a sequence of actions that form a path to a goal state (planning ahead).

if I wail, the human might refill my bowl. then I can eat more.
Formal Definition

1. **States**: a set S
2. An initial state $s_i \in S$
3. **Actions**: a set A
 \[\forall s \text{ Actions}(s) = \text{the set of actions that can be executed in } s, \text{ that are applicable in } s. \]
4. **Transition Model**: $\forall s \forall a \in \text{Actions}(s) \text{ Result}(s, a) \rightarrow s_r$
 s_r is called a **successor** of s
 \[\{s_i\} \cup \text{Successors}(s_i)^* = \text{state space} \]
5. **Path cost** (Performance Measure): Must be additive, e.g. sum of distances, number of actions executed, ...
 \[c(x,a,y) \text{ is the step cost, assumed } \geq 0 \]
 - (where action a goes from state x to state y)
6. **Goal test**: $\text{Goal}(s)$
 Can be implicit, e.g. $\text{checkmate}(s)$
 s is a **goal state** if $\text{Goal}(s)$ is **true**

Slides adapted from Chris Callison-Burch
Vacuum World

Solution:
A path from the initial state to a goal state

Goal states

Slides adapted from Chris Callison-Burch
Evaluating Solvers

✦ **Completeness**: Is the algorithm guaranteed to find a solution when there is one?

✦ **Optimality**: Does the strategy find the optimal solution?

✦ **Time complexity**: How long does it take to find a solution?

✦ **Space complexity**: How much memory is needed to perform the search?
Search
Example search problem: Holiday in Romania

You are here

You need to be here
Holiday in Romania

On holiday in Romania; currently in Arad

- Flight leaves tomorrow from Bucharest

Formulate **goal**

- Reach Bucharest

Formulate **search problem**

- States: different cities
- Actions: moving between cities
- Performance/cost: minimize distance

Find **solution**

- Sequence of cities starting in Arad & ending in Bucharest
Example search problem: 8-puzzle

Formulate goal
- Arrange the tiles as shown in goal state

Formulate search problem
- States: an arrangement of the board
- Actions: left, up, right, down for a given tile
- Cost: # of moves

Find solution
- List of different moves to take from start to goal
 3 up, 8 right, ...
Search Algorithms
One of the simplest search strategies for puzzle-solving is **backtracking search**.

In backtracking search, we make a guess to eliminate possibilities (narrow the search space).

If we run into a logical inconsistency, we **backtrack** (undo our guess) and try out a different guess.
Backtracking Search Application

Magical Stela (Cippus of Horus), Metropolitan Museum of Art