
Prof. Carolyn Anderson
Wellesley College

CS	232:		
Arti+icial	Intelligence Fall	2024

Reminders
✦ Next reading is Thinking Humans Chapter 8-9

✦ I have help hours today from 3:30-4:30 in W422

✦ Lyr has help hours Sunday 4-6

✦ I have help hours Monday from 4-5:15

✦ Shortened class + video on Tuesday

Check

POF

a

You	Look	Like	A	Thing	And	I	Love	You,	Chapters	3-4

How would you define the following
components of the search problem?
• Goal state
• Transition function
• Cost function

Chapter 3 describes using a neural network to generate
sandwich recipes. We’ll learn more about this technique later.
Consider generating a layer cake recipe as a search problem,
where the states are layers:
the start state is a layer of cake.

You	Look	Like	A	Thing	And	I	Love	You,	Chapters	3-4

Start State 1ˢᵗ layer of cake
Goal based on desired layers

of cake
decorations

flavor compatibility
flavor versus decoration
structural integrity 6

Goal function

Transition
function

flavors which to pick neat

size of layer
amountofMyrdient type of layer frosting filling cake

Cost time tobuild decorations
right flavor

Recap

Search
We’ve seen two kinds of search strategies so far:
✦ Uninformed search

- Breadth-first search
- Depth-first search

✦ Informed search
- Uniform cost search
- Greedy best first search
- A* search

gin
cost so far

hin howexpensive was
it to

reach the state
heuristic based guess about

cost to reachstate cost to reach the goal
heuristic basedguess how expensive will itbe

f n g a thin of cost to reachgoal to ream goalfromhere

Adversarial	Search

So far, we have only considered one-player games.
What happens when we add another player?

Search

Multiplayer	Games
In competitive multiplayer games, we have to
consider our opponent’s possible actions, as well as
our own.
We call this adversarial search.

Game Playing State-of-the-Art
▪ Checkers: 1950: First computer player.

1994: First computer champion:
Chinook ended 40-year-reign of human
champion Marion Tinsley using
complete 8-piece endgame. 2007:
Checkers solved!

▪ Chess: 1997: Deep Blue defeats human
champion Gary Kasparov in a six-game
match. Deep Blue examined 200M
positions per second, used very
sophisticated evaluation and
undisclosed methods for extending
some lines of search up to 40 ply.
Current programs are even better, if
less historic.

▪ Go: 2016: Alpha GO defeats human
champion. Uses Monte Carlo Tree
Search + neural network to learn
evaluation function.

▪ Go + Chess + Shogi: 2017: Alpha Zero
learns all 3 games using
reinforcement learning to play
against itself.

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Deterministic	Games

Key idea:
predict
your
opponent's
moves!

Deterministic	Games

States S including a start state

Players P I N

Actions A depend state player

Transition Function Trs a 5

Terminal test Terminat s

Utility function utility s

scoring how good is that outcome
end states

Competing	with	Adversaries

Zero-Sum	Games	
▪ Agents have opposite utilities

(values on outcomes)
▪ A single score that one maximizes

and the other minimizes
▪ Adversarial, pure competition

General	Games

▪ Agents have independent
utilities (values on outcomes)

▪ Cooperation, indifference,
competition, and more are all
possible

I shall prevail!! Maybe we could
be friends?

Value	of	a	State

Non-Terminal States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state:
The best achievable
outcome (utility)
from that state

Adversarial	Game	Trees
How should
I start?

What should
I do next?

Go Left Go Right

-1 3-2-31 4

Max player tries
tomaximize

score
p

1
Min player

tryamthnia
1 score

4 I 3

Minimax	Values

States Under Sam’s Control: States Under Thelma's Control:

s max V15 V s min Vis
s C successors s e successors s

Tic-Tac-Toe	Game	Tree

Image from CS188 Intro to AI at UC Berkeley

Max's current
location

Minimax	Search
In Minimax, we seek to optimize our score at the
expense of our opponent.
We do this by reasoning recursively to predict their
moves and compute the expected utility of various
states we could reach.

Minimax	Algorithm
def min-value(state):

initialize v = +∞
for each successor of

state:
v = min(v, max-

value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of

state:
v = max(v, min-

value(successor))
return v

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

Minimax	Algorithm

def min-value(state):
initialize v = +∞
for each successor of

state:
v = min(v, max-

value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of

state:
v = max(v, min-

value(successor))
return v

Minimax	Example

12 8 5 23 2 144 6

Max

3 A B C
Min 2 2

O E F

Minimax	Example

12 8 5 23 2 144 6

Question: Is Minimax optimal?

Expectations	v	Reality:	Pacman

Uh oh!

Minimax	Summary
✦ Rank final game states by their final scores (for tic-

tac-toe or chess: win, draw, loss).
✦ Rank intermediate game states by whose turn it is

and the available moves.
- If it's X's turn, set the rank to that of the maximum

move available. If a move will result in a win, X
should take it.

- If it's O's turn, set the rank to that of the minimum
move available. If a move will result in a loss, X
should avoid it.

Ef+iciency

Minimax	Ef+iciency

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

How	ef+icient	is	minimax?	
▪ Just like (exhaustive) DFS
▪ Time: O(bm)
▪ Space: O(bm)
▪ For chess, b ≈ 35, m ≈ 100

So, the exact solution is infeasible. But do we need to explore
the whole tree?

Minimax	Example

Image from www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-4-alpha-beta-pruning

Best sofar 5 Worst 7 BE
For

5 Warsi 2

Key idea: give up on paths when you realize that they are worse
than options you’ve already explore.
✦ Track the maximum score possible for the minimizing player

(beta)
✦ Track the minimum score possible for the maximizing player

(alpha)
Whenever the maximum score for beta becomes less than the
minimum score for alpha, the maximizing player can stop
searching down this path, because it will never be reached.

Pruning

Alpha-Beta Pruning
▪ General configuration (MIN version)
▪ We’re computing the MIN-VALUE at some

node n
▪ We’re looping over n’s children
▪ n’s estimate of the childrens’ min is dropping
▪ Who cares about n’s value? MAX
▪ Let a be the best value that MAX can get at

any choice point along the current path from
the root

▪ If n becomes worse than a, MAX will avoid it,
so we can stop considering n’s other children
(it’s already bad enough that it won’t be
played)

▪ MAX version is symmetric

MAX

MIN

MAX

MIN

a

n

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Alpha-Beta	Implementation

def min-value(state, α, β):
initialize v = +∞
for each successor of state:

v = min(v,
value(successor, α, β))

if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v,
value(successor, α, β))

if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

