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Reminders
✦ Shortened class today

✦ Lepei has help hours on Thursday

✦ I have help hours Friday from 3:30-4:30 in W422

✦ Worksheets to practice search algorithms
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Minimax	Summary
✦ Rank final game states by their final scores (for tic-

tac-toe or chess: win, draw, loss).
✦ Rank intermediate game states by whose turn it is 

and the available moves.
- If it's X's turn, set the rank to that of the maximum 

move available. If a move will result in a win, X 
should take it.

- If it's O's turn, set the rank to that of the minimum 
move available. If a move will result in a loss, X 
should avoid it.



Minimax	Values
States Under Sam’s Control: States Under Thelma's Control:

1 14 1



Pruning



Key idea: give up on paths when you realize that they are worse 
than options you’ve already explore. 
✦ Track the max score possible for the minimizing player (beta)
✦ Track the min score possible for the maximizing player (alpha)

Whenever the maximum score for beta becomes less than the 
minimum score for alpha, the maximizing player can stop 
searching down this path, because it will never be reached.

Pruning



Alpha-Beta Pruning
▪ General configuration (MIN version) 
▪ We’re computing the MIN-VALUE at some 

node n 
▪ We’re looping over n’s children 
▪ n’s estimate of the childrens’ min is dropping 
▪ Who cares about n’s value?  MAX 
▪ Let a be the best value that MAX can get at 

any choice point along the current path from 
the root 

▪ If n becomes worse than a, MAX will avoid it, 
so we can stop considering n’s other children 
(it’s already bad enough that it won’t be 
played) 

▪ MAX version is symmetric
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Alpha-Beta	Implementation

def min-value(state, α, β): 
initialize v = +∞ 
for each successor of state: 

v = min(v, 
value(successor, α, β)) 

if v ≤ α return v 
β = min(β, v) 

return v

def max-value(state, α, β): 
initialize v = -∞ 
for each successor of state: 

v = max(v, 
value(successor, α, β)) 

if v ≥ β return v 
α = max(α, v) 

return v

α: MAX’s best option on path to root 
β: MIN’s best option on path to root
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Minimax	Example

Image from www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-4-alpha-beta-pruning
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Alpha-Beta Pruning Properties

▪ This pruning has no effect on minimax value computed for 
the root! 

▪ Values of intermediate nodes might be wrong 
▪ Important: children of the root may have the wrong value 
▪ So the most naïve version won’t let you do action selection 

▪ Good child ordering improves effectiveness of pruning 

▪ With “perfect ordering”: 
▪ Time complexity drops to O(bm/2) 
▪ Doubles solvable depth! 
▪ Full search of, e.g. chess, is still hopeless… 

▪ This is a simple example of metareasoning (computing 
about what to compute)
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Another	Demo

http://web.mit.edu/dxh/www/adverse/index.html#


Alpha-Beta Quiz

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley



▪ Problem: In realistic games, cannot search to 
leaves! 

▪ Solution: Depth-limited search 
▪ Instead, search only to a limited depth in the tree 
▪ Replace terminal utilities with an evaluation 

function for non-terminal positions 

▪ Example: 
▪ Suppose we have 100 seconds, can explore 10K 

nodes / sec 
▪ So can check 1M nodes per move 
▪ α-β reaches about depth 8 – decent chess program 

▪ Guarantee of optimal play is gone 

▪ More plies makes a BIG difference 

▪ Use iterative deepening for an anytime 
algorithm

? ? ? ?
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Resource	Limits
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Resource	Limits
Ask a friend: 

If we set the depth 
limit to 2, what 

will Pacman do?skied



Why	Pacman	Starves
▪ A danger of replanning agents! 
▪ He knows his score will go up by eating the dot now (west, east) 
▪ He knows his score will go up just as much by eating the dot 

later (east, west) 
▪ There are no point-scoring opportunities after eating the dot 

(within the horizon, two here) 
▪ Therefore, waiting seems just as good as eating: he may go east, 

then back west in the next round of replanning!



Evaluation	Functions



Evaluation	Functions

Images from CS188 Intro to AI at UC Berkeley

▪ Evaluation functions score non-terminals in depth-limited search

▪ Ideal function: returns the actual minimax value of the position
▪ In practice: typically weighted linear sum of features:
▪ e.g.  f1(s) = (num white queens – num black queens), etc.



Evaluation	for	Pacman
Talk to a friend: what would be a good evaluation 
function for Pacman?



Expectimax



Expectimax	Search
In life, outcomes are often uncertain. It can be hard to 
predict exactly what will happen when we take actions.

▪ Explicit randomness: rolling dice
▪ Unpredictable opponents
▪ Actions can fail: robot might slip while navigating

max
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We can model this using Chance nodes!



Expectimax	Search
Like Minimax, but now there are chance nodes. For 
chance nodes, we take an average of their outcomes 
(children) weighted by the probabilities of each path.
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