
Prof. Carolyn Anderson
Wellesley College

CS	232:		
Arti+icial	Intelligence Fall	2024

Reminders
✦ Shortened class today

✦ Lepei has help hours on Thursday

✦ I have help hours Friday from 3:30-4:30 in W422

✦ Worksheets to practice search algorithms

n.no
Min A A A A

Maxg'd

Recap

Minimax	Summary
✦ Rank final game states by their final scores (for tic-

tac-toe or chess: win, draw, loss).
✦ Rank intermediate game states by whose turn it is

and the available moves.
- If it's X's turn, set the rank to that of the maximum

move available. If a move will result in a win, X
should take it.

- If it's O's turn, set the rank to that of the minimum
move available. If a move will result in a loss, X
should avoid it.

Minimax	Values
States Under Sam’s Control: States Under Thelma's Control:

1 14 1

Pruning

Key idea: give up on paths when you realize that they are worse
than options you’ve already explore.
✦ Track the max score possible for the minimizing player (beta)
✦ Track the min score possible for the maximizing player (alpha)

Whenever the maximum score for beta becomes less than the
minimum score for alpha, the maximizing player can stop
searching down this path, because it will never be reached.

Pruning

Alpha-Beta Pruning
▪ General configuration (MIN version)
▪ We’re computing the MIN-VALUE at some

node n
▪ We’re looping over n’s children
▪ n’s estimate of the childrens’ min is dropping
▪ Who cares about n’s value? MAX
▪ Let a be the best value that MAX can get at

any choice point along the current path from
the root

▪ If n becomes worse than a, MAX will avoid it,
so we can stop considering n’s other children
(it’s already bad enough that it won’t be
played)

▪ MAX version is symmetric

MAX

MIN

MAX

MIN

a

n

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

Alpha-Beta	Implementation

def min-value(state, α, β):
initialize v = +∞
for each successor of state:

v = min(v,
value(successor, α, β))

if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v,
value(successor, α, β))

if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

9Ham gifting
when s β when β
cross

Minimax	Example

Image from www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-4-alpha-beta-pruning

Alpherspofftrong

α β a

5
g 0B 8 5 β

Z
S β s β 5

i
2 2 535

Alpha-Beta Pruning Properties

▪ This pruning has no effect on minimax value computed for
the root!

▪ Values of intermediate nodes might be wrong
▪ Important: children of the root may have the wrong value
▪ So the most naïve version won’t let you do action selection

▪ Good child ordering improves effectiveness of pruning

▪ With “perfect ordering”:
▪ Time complexity drops to O(bm/2)
▪ Doubles solvable depth!
▪ Full search of, e.g. chess, is still hopeless…

▪ This is a simple example of metareasoning (computing
about what to compute)

10 10 0

max

min

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

i e they are bands not Its

Another	Demo

http://web.mit.edu/dxh/www/adverse/index.html#

Alpha-Beta Quiz

Slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley

▪ Problem: In realistic games, cannot search to
leaves!

▪ Solution: Depth-limited search
▪ Instead, search only to a limited depth in the tree
▪ Replace terminal utilities with an evaluation

function for non-terminal positions

▪ Example:
▪ Suppose we have 100 seconds, can explore 10K

nodes / sec
▪ So can check 1M nodes per move
▪ α-β reaches about depth 8 – decent chess program

▪ Guarantee of optimal play is gone

▪ More plies makes a BIG difference

▪ Use iterative deepening for an anytime
algorithm

? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Image from CS188 Intro to AI at UC Berkeley

Resource	Limits

x x
d

Resource	Limits
Ask a friend:

If we set the depth
limit to 2, what

will Pacman do?skied

Why	Pacman	Starves
▪ A danger of replanning agents!
▪ He knows his score will go up by eating the dot now (west, east)
▪ He knows his score will go up just as much by eating the dot

later (east, west)
▪ There are no point-scoring opportunities after eating the dot

(within the horizon, two here)
▪ Therefore, waiting seems just as good as eating: he may go east,

then back west in the next round of replanning!

Evaluation	Functions

Evaluation	Functions

Images from CS188 Intro to AI at UC Berkeley

▪ Evaluation functions score non-terminals in depth-limited search

▪ Ideal function: returns the actual minimax value of the position
▪ In practice: typically weighted linear sum of features:
▪ e.g. f1(s) = (num white queens – num black queens), etc.

Evaluation	for	Pacman
Talk to a friend: what would be a good evaluation
function for Pacman?

Expectimax

Expectimax	Search
In life, outcomes are often uncertain. It can be hard to
predict exactly what will happen when we take actions.

▪ Explicit randomness: rolling dice
▪ Unpredictable opponents
▪ Actions can fail: robot might slip while navigating

max

chance

10 10 9 100

We can model this using Chance nodes!

Expectimax	Search
Like Minimax, but now there are chance nodes. For
chance nodes, we take an average of their outcomes
(children) weighted by the probabilities of each path.

max

chance

10 10 9 100

0.5 0.5
0.9 0.1

10 A β
54.5

AM ANpaddo And

