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Rewards for Robots

When the journalist Amy Sutherland was doing research for a book on exotic
animal trainers, she learned that their primary method is preposterously
simple: “reward behavior I like and ignore behavior I don’t.” And as she
wrote in The New York Times’ Modern Love column, “Eventually it hit me
that the same techniques might work on that stubborn but lovable species, the
American husband.” Sutherland wrote about how, after years of futile
nagging, sarcasm, and resentment, she used this simple method to covertly
train her oblivious husband to pick up his socks, find his own car keys, show
up to restaurants on time, and shave more regularly.1

This classic training technique, known in psychology as operant
conditioning, has been used for centuries on animals and humans. Operant
conditioning inspired an important machine-learning approach called
reinforcement learning. Reinforcement learning contrasts with the
supervised-learning method I’ve described in previous chapters: in its purest
form, reinforcement learning requires no labeled training examples. Instead,
an agent—the learning program—performs actions in an environment
(usually a computer simulation) and occasionally receives rewards from the
environment. These intermittent rewards are the only feedback the agent uses
for learning. In the case of Amy Sutherland’s husband, the rewards were her
smiles, kisses, and words of praise. While a computer program might not
respond to a kiss or an enthusiastic “you’re the greatest,” it can be made to
respond to a machine equivalent of such appreciation—such as positive
numbers added to its memory.



FIGURE 22: A Sony Aibo robotic dog, about to kick a robot soccer ball

While reinforcement learning has been part of the AI toolbox for
decades, it has long been overshadowed by neural networks and other
supervised-learning methods. This changed in 2016 when reinforcement
learning played a central role in a stunning and momentous achievement in
AI: a program that learned to beat the best humans at the complex game of
Go. In order to explain that program, as well as other recent achievements of
reinforcement learning, I’ll first take you through a simple example to
illustrate how reinforcement learning works.

Training Your Robo-Dog

For our illustrative example, let’s look to the fun game of robot soccer, in
which humans (usually college students) program robots to play a simplified
version of soccer on a room-sized “field.” Sometimes the players are cute
doglike Aibo robots like the one shown in figure 22. An Aibo robot (made by
Sony) has a camera to capture visual inputs, an internal programmable
computer, and a collection of sensors and motors that enable it to walk, kick,
head-butt, and even wag its plastic tail.

Imagine that we want to teach our robo-dog the simplest soccer skill:
when facing the ball, walk over to it, and kick it. A traditional AI approach
would be to program the robot with the following rules: Take a step toward
the ball. Repeat until one of your feet is touching the ball. Then kick the ball
with that foot. Of course, shorthand descriptions such as “take a step toward
the ball,” “until one of your feet is touching the ball,” and “kick the ball”



must be carefully translated into detailed sensor and motor operations built
into the Aibo.

Such explicit rules might be sufficient for a task as simple as this one.
However, the more “intelligent” you want your robot to be, the harder it is to
manually specify rules for behavior. And of course, it’s impossible to devise
a set of rules that will work in every situation. What if there is a large puddle
between the robot and the ball? What if a soccer cone is blocking the robot’s
vision? What if a rock is blocking the ball’s movement? As always, the real
world is awash with hard-to-predict edge cases. The promise of
reinforcement learning is that the agent—here our robo-dog—can learn
flexible strategies on its own simply by performing actions in the world and
occasionally receiving rewards (that is, reinforcement) without humans
having to manually write rules or directly teach the agent every possible
circumstance.

Let’s call our robo-dog Rosie, after my favorite television robot, the wry
robotic housekeeper from the classic cartoon The Jetsons.2 To make things
easier for this example, let’s assume that Rosie comes from the factory
preprogrammed with the following ability: if a soccer ball is in Rosie’s line
of sight, she can estimate the number of steps she would need to take to get to
the ball. This number is called the “state.” In general, the state of an agent at
a given time is the agent’s perception of its current situation. Rosie is the
simplest of possible agents, in that her state is a single number. When I say
that Rosie is “in” a given state x, I mean that she is currently estimating that
she is x steps away from the ball.

In addition to being able to identify her state, Rosie has three built-in
actions she can perform: she can take a step Forward, take a step Backward,
and she can Kick. (If Rosie happens to step out-of-bounds, she is
programmed to immediately step back in.) In the spirit of operant
conditioning, let’s give Rosie a reward only when she succeeds in kicking
the ball. Note that Rosie doesn’t know ahead of time which, if any, states or
actions will lead to rewards.

Given that Rosie is a robot, her “reward” is simply a number, say, 10,
added to her “reward memory.” We can consider the number 10 the robot
equivalent of a dog treat. Or perhaps not. Unlike a real dog, Rosie has no
intrinsic desire for treats, positive numbers, or anything else. As I’ll detail
below, in reinforcement learning, a human-created algorithm guides Rosie’s



process of learning in response to rewards; that is, the algorithm tells Rosie
how to learn from her experiences.

Reinforcement learning occurs by having Rosie take actions over a
series of learning episodes, each of which consists of some number of
iterations. At each iteration, Rosie determines her current state and chooses
an action to take. If Rosie receives a reward, she then learns something, as
I’ll illustrate below. Here I’ll let each episode last until Rosie manages to
kick the ball, at which time she receives a reward. This might take a long
time. As in training a real dog, we have to be patient.

Figure 23 illustrates a hypothetical learning episode. The episode begins
with the trainer (me) placing Rosie and the ball in some initial locations on
the field, with Rosie facing the ball (figure 23A). Rosie determines her
current state: twelve steps away from the ball. Because Rosie hasn’t learned
anything yet, our dog, an innocent “tabula rasa,” doesn’t know which action
should be preferred, so she chooses an action at random from her three
possibilities: Forward, Backward, Kick. Let’s say she chooses Backward
and takes a step back. We humans can see that Backward is a bad action to
take, but remember, we’re letting Rosie figure out on her own how to
perform this task.



FIGURE 23: A hypothetical first episode of reinforcement learning

At iteration 2 (figure 23B), Rosie determines her new state: thirteen
steps from the ball. She then chooses a new action to take, again at random:
Forward. At iteration 3 (figure 23C), Rosie determines her “new” state:



twelve steps away from the ball. She’s back to square one, but Rosie doesn’t
even know that she has been in this state before! In the purest form of
reinforcement learning, the learning agent doesn’t remember its previous
states. In general, remembering previous states might take a lot of memory
and doesn’t turn out to be necessary.

At iteration 3, Rosie—again at random—chooses the action Kick, but
because she’s kicking empty air, she doesn’t get a reward. She has yet to
learn that kicking gives a reward only if she’s next to the ball.

Rosie continues to choose random actions, without any feedback, for
many iterations. But at some point, let’s say at iteration 351, just by dumb
luck Rosie ends up next to the ball and chooses Kick (figure 23D). Finally,
she gets a reward and uses it to learn something.

What does Rosie learn? Here we take the simplest approach to
reinforcement learning: upon receiving a reward, Rosie learns only about the
state and action that immediately preceded the reward. In particular, Rosie
learns that if she is in that state (for example, zero steps from the ball), taking
that action (for example, Kick) is a good idea. But that’s all she learns. She
doesn’t learn, for example, that if she is zero steps from the ball, Backward
would be a bad choice. After all, she hasn’t tried that yet. For all she knows,
taking a step backward in that state might lead to a much bigger reward!
Rosie also doesn’t learn at this point that if she is one step away, Forward
would be a good choice. She has to wait for the next episode for that.
Learning too much at one time can be detrimental; if Rosie happens to kick
the air two steps away from the ball, we don’t want her to learn that this
ineffective kick was actually a necessary step toward getting the reward. In
humans, this kind of behavior might be called superstition—namely,
erroneously believing that a particular action can help cause a particular
good or bad outcome. In reinforcement learning, superstition is something
that you have to be careful to avoid.

A crucial notion in reinforcement learning is that of the value of
performing a particular action in a given state. The value of action A in
state S is a number reflecting the agent’s current prediction of how much
reward it will eventually obtain if, when in state S, it performs action A, and
then continues performing high-value actions. Let me explain. If your current
state is “holding a chocolate in your hand,” an action with high value would
be to bring your hand to your mouth. Subsequent actions with high value



would be to open your mouth, put the chocolate inside, and chew. Your
reward is the delicious sensation of eating the chocolate. Bringing your hand
to your mouth doesn’t immediately produce this reward, but this action is on
the right path, and if you’ve eaten chocolate before, you can predict the
intensity of the upcoming reward. The goal of reinforcement learning is for
the agent to learn values that are good predictions of upcoming rewards
(assuming that the agent keeps doing the right thing after taking the action in
question).3 As we’ll see, the process of learning the values of particular
actions in a given state typically takes many steps of trial and error.

FIGURE 24: Rosie’s Q-table after her first episode of reinforcement learning

Rosie keeps track of the values of actions in a big table in her computer
memory. This table, illustrated in figure 24, lists all the possible states for
Rosie (that is, all possible distances she could be from the ball, up to the
length of the field), and for each state, her possible actions. Given a state,
each action in that state has a numerical value; these values will change—
becoming more accurate predictions of upcoming rewards—as Rosie
continues to learn. This table of states, actions, and values is called the Q-
table. This form of reinforcement learning is sometimes called Q-learning.
The letter Q is used because the letter V (for value) was used for something
else in the original paper on Q-learning.4

At the beginning of Rosie’s training, I initialize the Q-table by setting all
the values to 0—a “blank slate.” When Rosie receives a reward for kicking
the ball at the end of episode 1, the value of the action Kick when in state
“zero steps away” is updated to 10, the value of the reward. In the future,
when Rosie is in the “zero steps away” state, she can look at the Q-table, see
that Kick has the highest value—that is, it predicts the highest reward—and



decide to choose Kick rather than choosing randomly. That’s all that
“learning” means here!

Episode 1 ended with Rosie finally kicking the ball. We now move on to
episode 2 (figure 25), which starts with Rosie and the ball in new locations
(figure 25A). Just as before, at each iteration Rosie determines her current
state—initially, six steps away—and chooses an action, now by looking in
her Q-table. But at this point, the values of actions in her current state are
still all 0s; there’s no information yet to help her choose among them. So
Rosie again chooses an action at random: Backward. And she chooses
Backward again at the next iteration (figure 25B). Our robo-dog’s training
has a long way to go.



FIGURE 25: The second episode of reinforcement learning

Everything continues as before, until Rosie’s floundering random trial-
and-error actions happen to land her one step away from the ball (figure



25C), and she happens to choose Forward. Suddenly Rosie finds her foot
next to the ball (figure 25D), and the Q-table has something to say about this
state. In particular, it says that her current state—zero steps from the ball—
has an action—Kick—that is predicted to lead to a reward of 10. Now she
can use this information, learned at the previous episode, to choose an action
to perform, namely Kick. But here’s the essence of Q-learning: Rosie can
now learn something about the action (Forward) she took in the immediately
previous state (one step away). That is what led her to be in the excellent
position she is in now! Specifically, the value of action Forward in the state
“one step away” is updated in the Q-table to have a higher value, some
fraction of the value of the action “Kick when zero steps away,” which
directly leads to a reward. Here I’ve updated this value to 8 (figure 26).

FIGURE 26: Rosie’s Q-table after her second episode of reinforcement learning

The Q-table now tells Rosie that it’s really good to kick when in the
“zero steps away” state and that it’s almost as good to step forward when in
the “one step away” state. The next time Rosie finds herself in the “one step
away” state, she’ll have some information about what action she should take,
as well as the ability to learn an update for the immediately past action—the
Forward action in the “two steps away” state. Note that it is important for
these learned action values to be reduced (“discounted”) as they go back in
time from the actual reward; this allows the system to learn an efficient path
to an actual reward.

Reinforcement learning—here, the gradual updating of values in the Q-
table—continues, episode to episode, until Rosie has finally learned to
perform her task from any initial starting point. The Q-learning algorithm is a
way to assign values to actions in a given state, including those actions that



don’t lead directly to rewards but that set the stage for the relatively rare
states in which the agent does receive rewards.

I wrote a program that simulated Rosie’s Q-learning process as
described above. At the beginning of each episode, Rosie was placed, facing
the ball, a random number of steps away (with a maximum of twenty-five and
a minimum of zero steps away). As I mentioned earlier, if Rosie stepped out-
of-bounds, my program simply has her step back in. Each episode ended
when Rosie succeeded in reaching and kicking the ball. I found that it took
about three hundred episodes for her to learn to perform this task perfectly,
no matter where she started.

This “training Rosie” example captures much of the essence of
reinforcement learning, but I left out many issues that reinforcement-learning
researchers face for more complex tasks.5 For example, in real-world tasks,
the agent’s perception of its state is often uncertain, unlike Rosie’s perfect
knowledge of how many steps she is from the ball. A real soccer-playing
robot might have only a rough estimate of distance, or even some uncertainty
about which light-colored, small object on the soccer field is actually the
ball. The effects of performing an action can also be uncertain: for example,
a robot’s Forward action might move it different distances depending on the
terrain, or even result in the robot falling down or colliding with an unseen
obstacle. How can reinforcement learning deal with uncertainties like these?

Additionally, how should the learning agent choose an action at each
time step? A naive strategy would be to always choose the action with the
highest value for the current state in the Q-table. But this strategy has a
problem: it’s possible that other, as-yet-unexplored actions will lead to a
higher reward. How often should you explore—taking actions that you
haven’t yet tried—and how often should you choose actions that you already
expect to lead to some reward? When you go to a restaurant, do you always
order the meal you’ve already tried and found to be good, or do you try
something new, because the menu might contain an even better option?
Deciding how much to explore new actions and how much to exploit (that is,
stick with) tried-and-true actions is called the exploration versus exploitation
balance. Achieving the right balance is a core issue for making reinforcement
learning successful.

These are samples of ongoing research topics among the growing
community of people working on reinforcement learning. Just as in the field



of deep learning, designing successful reinforcement-learning systems is still
a difficult (and sometimes lucrative!) art, mastered by a relatively small
group of experts who, like their deep-learning counterparts, spend a lot of
time tuning hyperparameters. (How many learning episodes should be
allowed? How many iterations per episode should be allowed? How much
should a reward be “discounted” as it is spread back in time? And so on.)

Stumbling Blocks in the Real World

Setting these issues aside for now, let’s look at two major stumbling blocks
that might arise in extrapolating our “training Rosie” example to
reinforcement learning in real-world tasks. First, there’s the Q-table. In
complex real-world tasks—think, for example, of a robot car learning to
drive in a crowded city—it’s impossible to define a small set of “states” that
could be listed in a table. A single state for a car at a given time would be
something like the entirety of the data from its cameras and other sensors.
This means that a self-driving car effectively faces an infinite number of
possible states. Learning via a Q-table like the one in the “Rosie” example is
out of the question. For this reason, most modern approaches to
reinforcement learning use a neural network instead of a Q-table. The neural
network’s job is to learn what values should be assigned to actions in a given
state. In particular, the network is given the current state as input, and its
outputs are its estimates of the values of all the possible actions the agent can
take in that state. The hope is that the network can learn to group related
states into general concepts (It’s safe to drive forward or Stop immediately
to avoid hitting an obstacle).

The second stumbling block is the difficulty, in the real world, of
actually carrying out the learning process over many episodes, using a real
robot. Even our “Rosie” example isn’t feasible. Imagine yourself initializing
a new episode—walking out on the field to set up the robot and the ball—
hundreds of times, not to mention waiting around for the robot to perform its
hundreds of actions per episode. You just wouldn’t have enough time.
Moreover, you might risk the robot damaging itself by choosing the wrong
action, such as kicking a concrete wall or stepping forward over a cliff.



Just as I did for Rosie, reinforcement-learning practitioners almost
always deal with this problem by building simulations of robots and
environments and performing all the learning episodes in the simulation
rather than in the real world. Sometimes this approach works well. Robots
have been trained using simulations to walk, hop, grasp objects, and drive a
remote-control car, among other tasks, and the robots were able, with various
levels of success, to transfer the skills learned during simulation to the real
world.6 However, the more complex and unpredictable the environment, the
less successful are the attempts to transfer what is learned in simulation to
the real world. Because of these difficulties, it makes sense that to date the
greatest successes of reinforcement learning have been not in robotics but in
domains that can be perfectly simulated on a computer. In particular, the best-
known reinforcement-learning successes have been in the domain of game
playing. Applying reinforcement learning to games is the topic of the next
chapter.
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Game On

Since the earliest days of AI, enthusiasts have been obsessed with creating
programs that can beat humans at games. In the late 1940s, both Alan Turing
and Claude Shannon, two founders of the computer age, wrote programs to
play chess before there were even computers that could run their code. In the
decades that followed, many a young game fanatic has been driven to learn to
program in order to get computers to play their favorite game, whether it be
checkers, chess, backgammon, Go, poker, or, more recently, video games.

In 2010, a young British scientist and game enthusiast named Demis
Hassabis, along with two close friends, launched a company in London
called DeepMind Technologies. Hassabis is a colorful and storied figure in
the modern AI world. A chess prodigy who was winning championships by
the age of six, he started programming video games professionally at fifteen
and founded his own video game company at twenty-two. In addition to his
entrepreneurial activities, he obtained a PhD in cognitive neuroscience from
University College London in order to further his goal of building brain-
inspired AI. Hassabis and his colleagues founded DeepMind Technologies in
order to “tackle [the] really fundamental questions” about artificial
intelligence.1 Perhaps not surprisingly, the DeepMind group saw video
games as the proper venue for tackling those questions. Video games are, in
Hassabis’s view, “like microcosms of the real world, but … cleaner and
more constrained.”2



FIGURE 27: An illustration of Atari’s Breakout game

Whatever your stance on video games, if you are going more for “clean
and constrained” and less for “real world,” you might consider creating AI
programs to play Atari video games from the 1970s and ’80s. This is exactly
what the group at DeepMind decided to do. Depending on your age and
interests, you might remember some of these classic games, such as
Asteroids, Space Invaders, Pong, and Ms. Pac-Man. Are any of these
ringing a bell? With their uncomplicated graphics and joystick controls, the
games were easy enough for young children to learn but challenging enough
to hold adults’ interest.

Consider the single-player game called Breakout, illustrated in figure
27. The player uses the joystick to move a “paddle” (white rectangle at
lower right) back and forth. A “ball” (white circle) can be bounced off the
paddle to hit different-colored rectangular “bricks.” The ball can also
bounce off the gray “walls” at the sides. If the ball hits one of the bricks
(patterned rectangles), the brick disappears, the player gains points, and the
ball bounces back. Bricks in higher layers are worth more points than those
in lower layers. If the ball hits the “ground” (bottom of the screen), the player



loses one of five “lives,” and if any “lives” remain, a new ball shoots into
play. The player’s goal is to maximize the score over the five lives.

There’s an interesting side note here. Breakout was the result of Atari’s
effort to create a single-player version of its successful game Pong. The
design and implementation of Breakout were originally assigned in 1975 to a
twenty-year-old employee named Steve Jobs. Yes, that Steve Jobs (later,
cofounder of Apple). Jobs lacked sufficient engineering skills to do a good
job on Breakout, so he enlisted his friend Steve Wozniak, aged twenty-five
(later, the other cofounder of Apple), to help on the project. Wozniak and
Jobs completed the hardware design of Breakout in four nights, starting work
each night after Wozniak had completed his day job at Hewlett-Packard.
Once released, Breakout, like Pong, was hugely popular among gamers.

If you’re getting nostalgic but neglected to hang on to your old Atari
2600 game console, you can still find many websites offering Breakout and
other games. In 2013, a group of Canadian AI researchers released a
software platform called the Arcade Learning Environment that made it easy
to test machine-learning systems on forty-nine of these games.3 This was the
platform used by the DeepMind group in their work on reinforcement
learning.

Deep Q-Learning

The DeepMind group combined reinforcement learning—in particular Q-
learning—with deep neural networks to create a system that could learn to
play Atari video games. The group called their approach deep Q-learning.
To explain how deep Q-learning works, I’ll use Breakout as a running
example, but DeepMind used the same method on all the Atari games they
tackled. Things will get a bit technical here, so fasten your seat belt (or skip
to the next section).



FIGURE 28: Illustration of a Deep Q-Network (DQN) for Breakout

Recall how we used Q-learning to train Rosie the robo-dog. In an
episode of Q-learning, at each iteration the learning agent (Rosie) does the
following: it figures out its current state, looks up that state in the Q-table,
uses the values in the table to choose an action, performs that action, possibly
receives a reward, and—the learning step—updates the values in its Q-table.

DeepMind’s deep Q-learning is exactly the same, except that a
convolutional neural network takes the place of the Q-table. Following
DeepMind, I’ll call this network the Deep Q-Network (DQN). Figure 28
illustrates a DQN that is similar to (though simpler than) the one used by
DeepMind for learning to play Breakout. The input to the DQN is the state of
the system at a given time, which here is defined to be the current “frame”—
the pixels of the current screen—plus three prior frames (screen pixels from
three previous time steps). This definition of state provides the system with a
small amount of memory, which turns out to be useful here. The outputs of the
network are the estimated values for each possible action, given the input
state. The possible actions are the following: move the paddle Left, move the
paddle Right, and No-Op (“no operation,” that is, don’t move the paddle).
The network itself is a ConvNet virtually identical to the one I described in
chapter 4. Instead of the values in a Q-table, as we saw in the “Rosie”
example, in deep Q-learning it is the weights in this network that are learned.

DeepMind’s system learns to play Breakout over many episodes. Each
episode corresponds to a play of the game, and each iteration during an
episode corresponds to the system performing a single action. In particular,



at each iteration the system inputs its state to the DQN and chooses an action
based on the DQN’s output values. The system doesn’t always choose the
action with the highest estimated value; as I mentioned above, reinforcement
learning requires a balance between exploration and exploitation.4 The
system performs its chosen action (for example, moving the paddle some
amount to the left) and possibly receives a reward if the ball happens to hit
one of the bricks. The system then performs a step of learning—that is,
updating the weights in the DQN via back-propagation.

How are the weights updated? This is the crux of the difference between
supervised learning and reinforcement learning. As you’ll recall from earlier
chapters, back-propagation works by changing a neural network’s weights so
as to reduce the error in the network’s outputs. With supervised learning,
measuring this error is straightforward. Remember our hypothetical ConvNet
back in chapter 4 whose goal was to learn to classify photos as “dog” or
“cat”? If an input training photo pictured a dog but the “dog” output
confidence was only 20 percent, then the error for that output would be 100%
− 20% = 80%; that is, ideally, the output should have been 80 points higher.
The network could calculate the error because it had a label provided by a
human.

However, in reinforcement learning we have no labels. A given frame
from the game doesn’t come labeled with the action that should be taken.
How then do we assign an error to an output in this case?

Here’s the answer. Recall that if you are the learning agent, the value of
an action in the current state is your estimate of how much reward you will
receive by the end of the episode, if you choose this action (and continue
choosing high-value actions). This estimate should be better the closer you
get to the end of the episode, when you can tally up the actual rewards you
received! The trick is to assume that the network’s outputs at the current
iteration are closer to being correct than its outputs at the previous iteration.
Then learning consists in adjusting the network weights (via back-
propagation) so as to minimize the difference between the current and the
previous iteration’s outputs. Richard Sutton, one of the originators of this
method, calls this “learning a guess from a guess.”5 I’ll amend that to
“learning a guess from a better guess.”

In short, instead of learning to match its outputs to human-given labels,
the network learns to make its outputs consistent from one iteration to the



next, assuming that later iterations give better estimates of value than earlier
iterations. This learning method is called temporal difference learning.

To recap, here’s how deep Q-learning works for the game of Breakout
(and all the other Atari games). The system gives its current state as input to
the Deep Q-Network. The Deep Q-Network outputs a value for each
possible action. The system chooses and performs an action, resulting in a
new state. Now the learning step takes place: the system inputs its new state
to the network, which outputs a new set of values for each action. The
difference between the new set of values and the previous set of values is
considered the “error” of the network; this error is used by back-propagation
to change the weights of the network. These steps are repeated over many
episodes (plays of the game). Just to be clear, everything here—the Deep Q-
Network, the virtual “joystick,” and the game itself—is software running in a
computer.

This is essentially the algorithm developed by DeepMind’s researchers,
although they used some tricks to improve it and speed it up.6 At first, before
much learning has happened, the network’s outputs are quite random, and the
system’s game playing looks quite random as well. But gradually, as the
network learns weights that improve its outputs, the system’s playing ability
improves, in many cases quite dramatically.

The $650 Million Agent

The DeepMind group applied their deep Q-learning method to the forty-nine
different Atari games in the Arcade Learning Environment. While
DeepMind’s programmers used the same network architecture and
hyperparameter settings for each game, their system learned each game from
scratch; that is, the system’s knowledge (the network weights) learned for
one game was not transferred when the system started learning to play the
next game. Each game required training for thousands of episodes, but this
could be done relatively quickly on the company’s advanced computer
hardware.



FIGURE 29: DeepMind’s Breakout player discovered the strategy of tunneling through the bricks, which
allowed it to quickly destroy high-value top bricks by bouncing off the “ceiling.”

After a Deep Q-Network for each game was trained, DeepMind
compared the machine’s level of play with that of a human “professional
games tester,” who was allowed two hours of practice playing each game
before being evaluated. Sound like a fun job? Only if you like being
humiliated by a computer! DeepMind’s deep Q-learning programs turned out
to be better players than the human tester on more than half the games. And on
half of those games, the programs were more than twice as good as the
human. And on half of those games, the programs were more than five times
better. One stunning example was on Breakout, where the DQN program
scored on average more than ten times the human’s average score.

What, exactly, did these superhuman programs learn to do? Upon
investigation, DeepMind found that their programs had discovered some very
clever strategies. For example, the trained Breakout program had discovered
a devious trick, illustrated in figure 29. The program learned that if the ball
was able to knock out bricks so as to build a narrow tunnel through the edge
of the brick layer, then the ball would bounce back and forth between the



“ceiling” and the top of the brick layer, knocking out high-value top bricks
very quickly without the player having to move the paddle at all.

DeepMind first presented this work in 2013 at an international machine-
learning conference.7 The audience was dazzled. Less than a year later,
Google announced that it was acquiring DeepMind for £440 million (about
$650 million at the time), presumably because of these results. Yes,
reinforcement learning occasionally leads to big rewards.

With a lot of money in their pockets and the resources of Google behind
them, DeepMind—now called Google DeepMind—took on a bigger
challenge, one that had in fact long been considered one of AI’s “grand
challenges”: creating a program that learns to play the game Go better than
any human. DeepMind’s program AlphaGo builds on a long history of AI in
board games. Let’s start with a brief survey of that history, which will help in
explaining how AlphaGo works and why it is so significant.

Checkers and Chess

In 1949, the engineer Arthur Samuel joined IBM’s laboratory in
Poughkeepsie, New York, and immediately set about programming an early
version of IBM’s 701 computer to play checkers. If you yourself have any
computer programming experience, you will appreciate the challenge he
faced: as noted by one historian, “Samuel was the first person to do any
serious programming on the 701 and as such had no system utilities [that is,
essentially no operating system!] to call on. In particular he had no assembler
and had to write everything using the op codes and addresses.”8 To translate
for my nonprogrammer readers, this is something like building a house using
only a handsaw and a hammer. Samuel’s checkers-playing program was
among the earliest machine-learning programs; indeed, it was Samuel who
coined the term machine learning.



FIGURE 30: Part of a game tree for checkers. For simplicity, this figure shows only three possible moves
from each board position. The white arrows point from a moved piece’s previous square to its current

square.

Samuel’s checkers player was based on the method of searching a game
tree, which is the basis of all programs for playing board games to this day
(including AlphaGo, which I’ll describe below). Figure 30 illustrates part of
a game tree for checkers. The “root” of the tree (by convention drawn at the
top, unlike the root of a natural tree) shows the initial checkerboard, before
either player has moved. The “branches” from the root lead to all possible
moves for the first player (here, Black). There are seven possible moves (for
simplicity, the figure shows only three of these). For each of those seven
moves for Black, there are seven possible response moves for White (not all
shown in the figure), and so on. Each of the boards in figure 30, showing a
possible arrangement of pieces, is called a board position.

Imagine yourself playing a game of checkers. At each turn, you might
construct a small part of this tree in your mind. You might say to yourself, “If
I make this move, then my opponent could make that move, in which case I
could make that move, which will set me up for a jump.” Most people,
including the best players, consider only a few possible moves, looking



ahead only a few steps before choosing which move to make. A fast
computer, on the other hand, has the potential to perform this kind of look-
ahead on a much larger scale. What’s stopping the computer from looking at
every possible move and seeing which sequence of moves most quickly
leads to a win? The problem is the same kind of exponential increase we
saw back in chapter 3 (remember the king, the sage, and the grains of rice?).
The average game of checkers has about fifty moves, which means that the
game tree in figure 30 might extend down for fifty levels. At each level, there
are on average six or seven branches from each possible board position.
This means that the total number of board positions in the tree could be more
than six raised to the fiftieth power—a ridiculously huge number. A
hypothetical computer that could look at a trillion board positions per second
would take more than 1019 years to consider all the board positions in a
single game tree. (As is often done, we can compare this number with the age
of the universe, which is merely on the order of 1010 years.) Clearly a
complete search of the game tree is not feasible.

Fortunately, it’s possible for computers to play well without doing this
kind of exhaustive search. On each of its turns, Samuel’s checkers-playing
program created (in the computer’s memory) a small part of a game tree like
the one in figure 30. The root of the tree was the player’s current board
position, and the program, using its built-in knowledge of the rules of
checkers, generated all the legal moves it could make from this current board
position. It then generated all the legal moves that the opponent could make
from each of the resulting positions, and so on, up to four or five turns (or
“plies”) of look-ahead.9

The program then evaluated board positions that appeared at the end of
the look-ahead process; in figure 30, these would be the board positions in
the bottom row in the partial tree. Evaluating a board position means
assigning it a numerical value that estimates how likely it is to lead to a win
for the program. Samuel’s program used an evaluation function that gave
points, thirty-eight in total, for various features of the board, such as Black’s
advantage in total number of pieces, Black’s number of kings, and how many
of Black’s pieces were close to being kinged. These specific features were
chosen by Samuel using his knowledge of checkers. Once each of the bottom-
row board positions was thus evaluated, the program employed a classic
algorithm, called minimax, which used these values—from the end of the



look-ahead process—in order to rate the program’s immediate possible
moves from its current board position. The program then chose the highest-
rated move.

The intuition here is that the evaluation function will be more accurate
when applied to board positions further along in the game; thus the program’s
strategy is to first look at all possible move sequences a few steps into the
future and then apply the evaluation function to the resulting board positions.
The evaluations are then propagated back up the tree by minimax, which
produces a rating of all the possible immediate moves from the current board
position.10

What the program learned was which features of the board should be
included in the evaluation function at a given turn, as well as how to weight
these different features when summing their points. Samuel experimented
with several methods for learning in his system. In the most interesting
version, the system learned while playing itself! The method for learning was
somewhat complicated, and I won’t detail it here, but it had some aspects
that foreshadowed modern reinforcement learning.11

In the end, Samuel’s checkers player impressively rose to the level of a
“better-than-average player,” though by no means a champion. It was
characterized by some amateur players as “tricky but beatable.”12 But
notably, the program was a publicity windfall for IBM: the day after Samuel
demonstrated it on national television in 1956, IBM’s stock price rose by
fifteen points. This was the first of several times IBM saw its stock price
increase after a demonstration of a game-playing program beating humans; as
a more recent example, IBM’s stock price similarly rose after the widely
viewed TV broadcasts in which its Watson program won in the game show
Jeopardy!

While Samuel’s checkers player was an important milestone in AI
history, I made this historical digression primarily to introduce three all-
important concepts that it illustrates: the game tree, the evaluation function,
and learning by self-play.

Deep Blue



Although Samuel’s “tricky but beatable” checkers program was remarkable,
especially for its time, it hardly challenged people’s idea of themselves as
uniquely intelligent. Even if a machine could win against human checkers
champions (as one finally did in 199413), mastering the game of checkers was
never seen as a proxy for general intelligence. Chess is a different story. In
the words of DeepMind’s Demis Hassabis, “For decades, leading computer
scientists believed that, given the traditional status of chess as an exemplary
demonstration of human intellect, a competent computer chess player would
soon also surpass all other human abilities.”14 Many people, including the
early pioneers of AI Allen Newell and Herbert Simon, professed this exalted
view of chess; in 1958 Newell and Simon wrote, “If one could devise a
successful chess machine, one would seem to have penetrated to the core of
human intellectual endeavor.”15

Chess is significantly more complex than checkers. For example, I said
above that in checkers there are, on average, six or seven possible moves
from any given board position. In contrast, chess has on average thirty-five
moves from any given board position. This makes the chess game tree
enormously larger than that of checkers. Over the decades, chess-playing
programs kept improving, in lockstep with improvements in the speed of
computer hardware. In 1997, IBM had its second big game-playing triumph
with Deep Blue, a chess-playing program that beat the world champion
Garry Kasparov in a widely broadcast multigame match.

Deep Blue used much the same method as Samuel’s checkers player: at a
given turn, it created a partial game tree using the current board position as
the root; it applied its evaluation function to the furthest layer in the tree and
then used the minimax algorithm to propagate the values up the tree in order
to determine which move it should make. The major differences between
Samuel’s program and Deep Blue were Deep Blue’s deeper look-ahead in its
game tree, its more complex (chess-specific) evaluation function, hand-
programmed chess knowledge, and specialized parallel hardware to make it
run very fast. Furthermore, unlike Samuel’s checkers-playing program, Deep
Blue did not use machine learning in any central way.

Like Samuel’s checkers player before it, Deep Blue’s defeat of
Kasparov spurred a significant increase in IBM’s stock price.16 This defeat
also generated considerable consternation in the media about the
implications for superhuman intelligence as well as doubts about whether



humans would still be motivated to play chess. But in the decades since Deep
Blue, humanity has adapted. As Claude Shannon wrote presciently in 1950, a
machine that can surpass humans at chess “will force us either to admit the
possibility of mechanized thinking or to further restrict our concept of
thinking.”17 The latter happened. Superhuman chess playing is now seen as
something that doesn’t require general intelligence. Deep Blue isn’t
intelligent in any sense we mean today. It can’t do anything but play chess,
and it doesn’t have any conception of what “playing a game” or “winning”
means to humans. (I once heard a speaker say, “Deep Blue may have beat
Kasparov, but it didn’t get any joy out of it.”) Moreover, chess has survived
—even prospered—as a challenging human activity. Nowadays, computer-
chess programs are used by human players as a kind of training aid, in the
way a baseball player might practice using a pitching machine. Is this a result
of our evolving notion of intelligence, which advances in AI help to clarify?
Or is it another example of John McCarthy’s maxim: “As soon as it works,
no one calls it AI anymore”?18

The Grand Challenge of Go

The game of Go has been around for more than two thousand years and is
considered among the most difficult of all board games. If you’re not a Go
player, don’t worry; none of my discussion here will require any prior
knowledge of the game. But it’s useful to know that the game has serious
status, especially in East Asia, where it is extremely popular. “Go is a
pastime beloved by emperors and generals, intellectuals and child
prodigies,” writes the scholar and journalist Alan Levinovitz, who goes on to
quote the South Korean Go champion Lee Sedol: “There is chess in the
western world, but Go is incomparably more subtle and intellectual.”19

Go is a game that has fairly simple rules but produces what you might
call emergent complexity. At each turn, a player places a piece of his or her
color (black or white) on a nineteen-by-nineteen-square board, following
rules for where pieces may be placed and how to capture one’s opponent’s
pieces. Unlike chess, with its hierarchy of pawns, bishops, queens, and so
on, pieces in Go (“stones”) are all equal. It’s the configuration of stones on
the board that a player must quickly analyze to decide on a move.



Creating a program to play Go well has been a focus of AI since the
field’s early days. However, Go’s complexity made this task remarkably
hard. In 1997, the same year Deep Blue beat Kasparov, the best Go programs
could still be easily defeated by average players. Deep Blue, you’ll recall,
was able to do a significant amount of look-ahead from any board position
and then use its evaluation function to assign values to future board positions,
where each value predicted whether a particular board position would lead
to a win. Go programs are not able to use this strategy for two reasons. First,
the size of a look-ahead tree in Go is dramatically larger than that in chess.
Whereas a chess player must choose from on average 35 possible moves
from a given board position, a Go player has on average 250 such
possibilities. Even with special-purpose hardware, a Deep Blue–style brute-
force search of the Go game tree is just not feasible. Second, no one has
succeeded in creating a good evaluation function for Go board positions.
That is, no one has been able to construct a successful formula that examines
a board position in Go and predicts who is going to win. The best (human)
Go players rely on their pattern-recognition skills and their ineffable
“intuition.”

AI researchers haven’t yet figured out how to encode intuition into an
evaluation function. This is why, in 1997, the same year that Deep Blue beat
Kasparov, the journalist George Johnson wrote in The New York Times,
“When or if a computer defeats a human Go champion, it will be a sign that
artificial intelligence is truly beginning to become as good as the real
thing.”20 This may sound familiar—just like what people used to say about
chess! Johnson quoted one Go enthusiast’s prediction: “It may be a hundred
years before a computer beats humans at Go—maybe even longer.” A mere
twenty years later, AlphaGo, which learned to play Go via deep Q-learning,
beat Lee Sedol in a five-game match.

AlphaGo Versus Lee Sedol

Before I explain how AlphaGo works, let’s first commemorate its
spectacular wins against Lee Sedol, one of the world’s best Go players.
Even after watching AlphaGo defeat the then European Go champion Fan Hui
half a year earlier, Lee remained confident that he would prevail: “I think



[AlphaGo’s] level doesn’t match mine.… Of course, there would have been
many updates in the last four or five months, but that isn’t enough time to
challenge me.”21

Perhaps you were one of the more than two hundred million people who
watched some part of the AlphaGo-Lee match online in March 2016. I’m
certain that this ranks as the largest audience by far for any Go match in the
game’s twenty-five-hundred-year history. After the first game, you might have
shared Lee’s reaction at his loss to the program: “I am in shock, I admit that.
… I didn’t think AlphaGo would play the game in such a perfect manner.”22

AlphaGo’s “perfect” play included many moves that evoked surprise
and admiration among the match’s human commentators. But partway through
game 2, AlphaGo made a single move that gobsmacked even the most
advanced Go experts. As Wired reported,

At first, Fan Hui [the aforementioned European Go champion] thought the move was rather
odd. But then he saw its beauty. “It’s not a human move. I’ve never seen a human play this
move,” he says. “So beautiful.” It’s a word he keeps repeating. Beautiful. Beautiful. Beautiful.
… “That’s a very surprising move,” said one of the match’s English language commentators,
who is himself a very talented Go player. Then the other chuckled and said: “I thought it was a
mistake.” But perhaps no one was more surprised than Lee Sedol, who stood up and left the
match room. “He had to go wash his face or something‚ just to recover,” said the first
commentator.23

Of this same move, The Economist noted, “Intriguingly, moves like these are
sometimes made by human Go masters. They are known in Japanese as kami
no itte (‘the hand of God,’ or ‘divine moves’).”24

AlphaGo won that game, and the next. But in game 4, Lee had his own
kami no itte moment, one that captures the intricacy of the game and the
intuitive power of the top players. Lee’s move took the commentators by
surprise, but they immediately recognized it as potentially lethal for Lee’s
opponent. One writer noted, “AlphaGo, however, didn’t seem to realize what
was happening. This wasn’t something it had encountered … in the millions
and millions of games it had played with itself. At the post-match press
conference Sedol was asked what he had been thinking when he played it. It
was, he said, the only move he had been able to see.”25

AlphaGo lost game 4 but came back to win game 5 and thus the match. In
the popular media, it was Deep Blue versus Kasparov all over again, with an



endless supply of think pieces on what AlphaGo’s triumph meant for the
future of humanity. But this was even more significant than Deep Blue’s win:
AI had surmounted an even greater challenge than chess and had done so in a
much more impressive fashion. Unlike Deep Blue, AlphaGo acquired its
abilities by reinforcement learning via self-play.

Demis Hassabis noted that “the thing that separates out top Go players
[is] their intuition” and that “what we’ve done with AlphaGo is to introduce
with neural networks this aspect of intuition, if you want to call it that.”26

How AlphaGo Works

There have been several different versions of AlphaGo, so to keep them
straight, DeepMind started naming them after the human Go champions the
programs had defeated—AlphaGo Fan and AlphaGo Lee—which to me
evoked the image of the skulls of vanquished enemies in the collection of a
digital Viking. Not what DeepMind intended, I’m sure. In any case, AlphaGo
Fan and AlphaGo Lee both used an intricate mix of deep Q-learning, “Monte
Carlo tree search,” supervised learning, and specialized Go knowledge. But
a year after the Lee Sedol match, DeepMind developed a version of the
program that was both simpler than and superior to the previous versions.
This newer version is called AlphaGo Zero because, unlike its predecessor,
it started off with “zero” knowledge of Go besides the rules.27 In a hundred
games of AlphaGo Lee versus AlphaGo Zero, the latter won every single
game. Moreover, DeepMind applied the same methods (though with different
networks and different built-in game rules) to learn to play both chess and
shogi (also known as Japanese chess).28 The authors called the collection of
these methods AlphaZero. In this section, I’ll describe how AlphaGo Zero
worked, but for conciseness I’ll simply refer to this version as AlphaGo.



FIGURE 31: An illustration of Monte Carlo tree search

The word intuition has an aura of mystery, but AlphaGo’s intuition (if
you want to call it that) arises from its combination of deep Q-learning with a
clever method called “Monte Carlo tree search.” Let’s take a moment to
unpack that cumbersome name. First, the “Monte Carlo” part. Monte Carlo
is, of course, the most glamorous part of the tiny Principality of Monaco, on
the French Riviera, famous for its jet-setter casinos, car racing, and frequent
appearance in James Bond movies. But in science and mathematics, “Monte
Carlo” refers to a family of computer algorithms, the so-called Monte Carlo
method, which was first used during the Manhattan Project to help design the
atomic bomb. The name comes from the idea that a degree of randomness—
like that of the iconic spinning roulette wheel in the Monte Carlo Casino—
can be used by a computer to solve difficult mathematical problems.

Monte Carlo tree search is a version of the Monte Carlo method
specifically devised for computer game-playing programs. Similar to the
way Deep Blue’s evaluation function worked, Monte Carlo tree search is
used to assign a score to each possible move from a given board position.
However, as I explained above, using extensive look-ahead in the game tree
is not feasible for Go, and no one has been able to come up with a good
evaluation function for board positions in Go. Monte Carlo tree search works
differently.

Figure 31 illustrates Monte Carlo tree search. First, look at figure 31A.
The black circle represents the current board position—that is, the
configuration of pieces on the board at the current turn. Assume our Go-



playing program is playing Black, and it is Black’s move. Let’s assume for
simplicity that there are three possible moves for Black, represented by the
three arrows. Which move should Black choose?

If Black had enough time, it could do a “full search” of the game tree:
look ahead at all the possible sequences of moves that could be played and
choose a move that gives the best chance of leading to a win for Black. But
doing this exhaustive look-ahead isn’t possible; as I mentioned earlier, even
all the time since the beginning of the universe isn’t nearly enough to do a full
tree search in Go. With Monte Carlo tree search, Black looks ahead at only a
minuscule fraction of the possible sequences that could arise from each
move, counts how many wins and losses those hypothetical sequences lead
to, and uses those counts to give a score to each of its possible moves. The
roulette-wheel-inspired randomness is used in deciding how to do the look-
ahead.

More specifically, in order to choose a move from its current position,
Black “imagines” (that is, simulates) several possible ways the game could
play out, as illustrated in figure 31B–D. In each of these simulations, Black
starts at its current position, randomly chooses one of its possible moves,
then (from the new board position) randomly chooses a move for its
opponent (White), and so on, continuing until the simulated game ends up in a
win or loss for Black. Such a simulation, starting from a given board
position, is called a roll-out from that position.

In the figure, you can see that in the three roll-outs, Black won once and
lost twice. Black can now assign a score to each possible move from its
current board position (figure 31E). Move 1 (leftmost arrow) participated in
two roll-outs, one of which ended in a win, so that move’s score is 1 out of
2. Move 3 (rightmost arrow) participated in one roll-out, which ended in a
loss, so its score is 0 out of 1. The center move was not tried at all, so its
score is set to 0. Moreover, the program keeps similar statistics on all the
intermediate moves that participated in the roll-outs. Once this round of
Monte Carlo tree search has finished, the program can use its updated scores
to decide which of its possible moves seems the most promising—here,
move 1. The program can then make that move in the actual game.

When I said before that during a roll-out the program chooses moves for
itself and its opponents at random, what actually happens is that the program
chooses moves probabilistically based on any scores that those moves might



have from previous rounds of Monte Carlo tree search. When each roll-out
finishes with a win or loss, the algorithm updates all the scores of moves it
made during that game to reflect the win or loss.

At first, the program’s choice of moves from a given board position is
quite random (the program is doing the equivalent of spinning a roulette
wheel to choose a move), but as the program performs additional roll-outs,
generating additional statistics, it is increasingly biased to choose those
moves that in past roll-outs led to the most wins.

In this way, Monte Carlo tree search doesn’t have to guess from just
looking at a board position which move is most likely to lead to a win; it
uses its roll-outs to collect statistics on how many times a given move
actually leads to a win or loss. The more roll-outs the algorithm runs, the
better its statistics. As before, the program needs to balance exploitation
(choosing the highest-scoring moves during a roll-out) with exploration
(sometimes choosing lower-scoring moves for which the program doesn’t yet
have much statistics). In figure 31, I showed three roll-outs; AlphaGo’s
Monte Carlo tree search performed close to two thousand roll-outs per turn.

The computer scientists at DeepMind didn’t invent Monte Carlo tree
search. It was first proposed in the context of game trees in 2006, and it
resulted in a very big improvement in the ability of computer Go programs.
But these programs still couldn’t beat the best humans. One problem was that
generating sufficient statistics from roll-outs can take a lot of time, especially
in Go, with its vast number of possible moves. The DeepMind group realized
that they could improve their system by complementing Monte Carlo tree
search with a deep convolutional neural network. Given the current board
position as input, AlphaGo uses a trained deep convolutional neural network
to assign a rough value to all possible moves from the current position. Then
Monte Carlo tree search uses those values to kick-start its search: rather than
initially choosing moves at random, Monte Carlo tree search uses values
output by the ConvNet as an indicator of which initial moves should be
preferred. Imagine that you are AlphaGo staring at a board position: before
you start the Monte Carlo process of performing roll-outs from that position,
the ConvNet is whispering in your ear which of the possible moves from
your current position are probably the best ones.

Conversely, the results of Monte Carlo tree search feed back to train the
ConvNet. Imagine yourself as AlphaGo after a Monte Carlo tree search. The



results of your search are new probabilities assigned to all your possible
moves, based on how many times those moves led to wins or losses during
the roll-outs you performed. These new probabilities are now used to correct
your ConvNet’s output, via back-propagation. You and your opponent then
choose moves, as a result of which you have a new board position, and the
process continues. In principle, the convolutional neural network will learn
to recognize patterns, just as Go masters do. Eventually, the ConvNet will
play the role of the program’s “intuition,” which is further improved by
Monte Carlo tree search.

Like its ancestor, Samuel’s checkers player, AlphaGo learns by playing
against itself over many games (about five million). During its training, the
convolutional neural network’s weights are updated after each move based
on the difference between the network’s output values and the improved
values after Monte Carlo tree search is run. Then, when it’s time for
AlphaGo to play, say, a human like Lee Sedol, the trained ConvNet is used at
each turn to generate values to help Monte Carlo tree search get started.

With its AlphaGo project, DeepMind demonstrated that one of AI’s
longtime grand challenges could be conquered by an inventive combination
of reinforcement learning, convolutional neural networks, and Monte Carlo
tree search (and adding powerful modern computing hardware to the mix).
As a result, AlphaGo has attained a well-deserved place in the AI pantheon.
But what’s next? Will this potent combination of methods generalize beyond
the world of game playing? This is the question I discuss in the next chapter.
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