
CS235 Languages and Automata

Department of Computer Science
Wellesley College

Lexical Analysis with
Regular Expressions

Thursday, October 23, 2008
Reading: Stoughton 3.14, Appel Chs. 1 and 2

Lexical Analysis 22-2

Lecture Overview
Lexical analysis = breaking programs into tokens is the first stage

of a compiler.

The structure of tokens can be specified by regular expressions.

The ML-Lex tool can automatically derive a lexical analyzer from
a description of tokens specified by regular expressions.

To use ML-Lex, we’ll need to learn a few more ML features:
• sum-of-product data structures
• mutable cells

Lexical Analysis 22-3

Compiler Structure

 Lexer
(a.k.a. Scanner,
 Tokenizer)

Source
Program

(character
stream)

Parser
Tokens Type

Checker

Abstract
Syntax

Tree (AST)

Optimizer

Intermediate Representation

Code
Generator

Machine code or byte code

Global Analysis
Information
(Symbol and

Attribute Tables)

(used by all phases
of the compiler)

Intermediate Representation

Semantic
 Analysis

Intermediate Representation

Front End
 (CS235)

Back End
 (CS301)

 Middle
 Stages
(CS251/
 CS301)

Lexical Analysis 22-4

Front End Example
if (num > 0 && num <= top) { // Is num in range?
 return c*num
} else {return 0;}

if (num > 0 && num <= top) { return c * num }

else { return 0 ; }

conditional

return

intlit

return

times

 logical
operator and

varref intlit

relational
 operator

greater less-or-
 equal

relational
 operator

arithmetic
 operator

varref varref
varref varref 0

c num
0num num top

Lexer (ignores whitespace, comments)

Parser (creates AST)

Lexical Analysis 22-5

Sample English Description of Lexer Rules
An integer is a sequence of digits. A nonempty sequence of digits followed

by E followed by a nonempty sequence of digits is scientific notation
(e.g., 12E34 stands for 12x1034).

An identifier is a sequence of letters and digits; the first character must
be a letter. The underscore _ counts as a letter. Upper- and lowercase
letters are different.

Certain names are reserved as keywords in the language and cannot
be used as identifiers. E.g., Java keywords include while, for, if, else,
public, private, static, class, int, void. ML keywords include fun, let, in,
end, if, then, else.

If the input character stream has been parsed into tokens up to a given
character, the next token is taken to include the longest string of
characters that could possibly constitute a token. Blanks, tabs,
newlines, and comments (known collectively as whitespace) are ignored
except as they serve to separate tokens. Some whitespace is required
to separate otherwise adjacent identifiers, keywords, and constants.

Lexical Analysis 22-6

Some ML-Lex Regular Expression Patterns
Pattern Matches
“abc” the literal string of characters abc
. any character except newline
[a-zA-Z0-9] any alphanumeric character
[^d-g] any character except lowercase d,e,f,g
r1r2 r1 followed by r2, where r1, r2 are reg. exps.
r1|r2 r1 or r2
r* zero or more rs, where r a reg. exp.
r+ one or more rs
r? zero or one rs
(r) r (parens for grouping)
{REName} regular expression with name REName

Lexical Analysis 22-7

Regular Expressions for Some Tokens
“if” if keyword
[a-zA-Z_][a-zA-Z0-9_]* identifiers (variable names)
[0-9]+(E[0-9]+)? integers

How should the following be split into tokens?
if 12
if89 1289
ifE89 12E89
ifEat34 12Eat34

Disambiguation rules:

Longest match. The longest initial substring of the input that can
match any regular expression is taken as the next token.

Rule Priority. For a particular longest initial substring, the first
regular expression that can match determines its token.

Lexical Analysis 22-8

A SLiP Program

sum := 5+3;
prod := (print (sum, sum-1), 10*sum);
print(prod);

Here is a simple program in the straight-line programming
language of Appel Ch. 1 (which I call SLiP):

Imagine that this is in the file test.slip.

We expect it to have the following tokens:

sum := 5 + 3 ;

prod := (print (sum , sum - 1) ,

 10 * sum) ;

print (prod) ; EOF

How do we represent these tokens in SML?

Lexical Analysis 22-9

SML Digression: Sum-of-Product Data Types
(* contents of the file figure.sml *)
datatype figure =
 Square of int (* <constructor function> of <components> *)
 | Rectangle of int * int
 | Triangle of int * int * int

fun perimeter (Square side) = 4*side
 | perimeter (Rectangle(w,h)) = 2*(w+h)
 | perimeter (Triangle(s1,s2,s3)) = s1+s2+s3

fun scale c (Square side) = Square(c*side)
 | scale c (Rectangle(w,h)) = Rectangle(c*w,c*h)
 | scale c (Triangle(s1,s2,s3)) = Triangle(c*s1,c*s2,c*s3)

- use "figure.sml";
[opening figure.sml]
datatype figure
 = Rectangle of int * int | Square of int | Triangle of int * int * int
val perimeter = fn : figure -> int
val scale = fn : int -> figure -> figure
val it = () : unit

- map perimeter [Square 1, Rectangle(2,3), Triangle(4,5,6)];
val it = [4,10,15] : int list

- map (scale 10) [Square 1, Rectangle(2,3), Triangle(4,5,6)];
val it = [Square 10,Rectangle (20,30),Triangle (40,50,60)] : figure list

Lexical Analysis 22-10

We Can Define our Own List Data Type
(* contents of the file mylist.sml *)
datatype 'a mylist = Nil | Cons of 'a * ('a mylist)

fun sum Nil = 0
 | sum (Cons(n,ns)) = n + (sum ns)

fun map f Nil = Nil
 | map f (Cons(x,xs)) = Cons(f x, map f xs)

- use "mylist.sml";
[opening mylist.sml]
datatype 'a mylist = Cons of 'a * 'a mylist | Nil
val sum = fn : int mylist -> int
val map = fn : ('a -> 'b) -> 'a mylist -> 'b mylist
val it = () : unit

- sum (Cons(1, Cons(2, Cons(3, Nil))));
val it = 6 : int

- map (fn x => x*2) (Cons(1, Cons(2, Cons(3, Nil))));
val it = Cons (2,Cons (4,Cons (6,Nil))) : int mylist

Lexical Analysis 22-11

A Token Data Type
datatype binop = Add | Mul | Sub | Div

datatype token = EOF
 | ID of string
 | INT of int
 | OP of binop
 | PRINT
 | LPAREN | RPAREN | COMMA | SEMI | GETS

sum := 5+3;
prod := (print (sum, sum-1), 10*sum);
print(prod);

[ID "sum", GETS, INT 5, OP Add, INT 3, SEMI,
 ID "prod", GETS, LPAREN, PRINT, LPAREN, ID "sum", COMMA, ID "sum",
 OP Sub, INT 1, RPAREN, COMMA, INT 10, OP Mul, ID "sum", RPAREN, SEMI,
 PRINT, LPAREN, ID "prod", RPAREN, SEMI, EOF]

Sample program

SML token list for sample program

token data type definition

Lexical Analysis 22-12

Some Token Operations
fun eof() = EOF

fun isEof(EOF) = true
 | isEof(_) = false

fun binopToString(Add) = "+"
 | binopToString(Sub) = "-"
 | binopToString(Mul) = "*"
 | binopToString(Div) = "/"

 fun toString(EOF) = "[EOF]"
 | toString(ID(s)) = "[" ^ s ^ "]"
 | toString(INT(i)) = "[" ^ (Int.toString(i)) ^ "]"
 | toString(OP(opr)) = "[" ^ (binopToString(opr)) ^ "]"
 | toString(PRINT) = "[PRINT]"
 | toString(LPAREN) = "[(]"
 | toString(RPAREN) = "[)]"
 | toString(COMMA) = "[,]"
 | toString(SEMI) = "[;]"
 | toString(GETS) = "[:=]"

Lexical Analysis 22-13

ml-lex: A Scanner Generator

ml-lex.lex file
(token specifications

plus token-handling code)

SML scanner

program
(as character stream)

token streamSML scanner

Slip.lex Slip.lex.sml

A Slip program
Tokens for
Slip program

Lexical Analysis 22-14

Format of a .lex File
Header section with SML code
%%
Definitions of named regular expressions with form:
name=regexp
%%
Rules with pairs of token patterns & SML code having the form:
regexp => SML-expression

In SML-expression, the following special expressions may be used:
yytext Stands for the string matching the expression
yypos Character index of the first character of

yytext in the input character stream
lex() Ignores current token string and continues lexing
YYBEGIN <state> Change state of lexer to <state>

Lexical Analysis 22-15

Slip.lex Header Code
open Token

type lexresult = token

fun eof () = Token.eof()

fun pluck (SOME(v)) = v
 | pluck NONE = raise Fail ("Shouldn't happen -- pluck(NONE)")

Note: functions like eof() and pluck can be put in a separate file
 and then loaded into header.

Lexical Analysis 22-16

Slip.lex Definitions and Rules
alpha=[a-zA-Z];
alphaNumUnd=[a-zA-Z0-9_];
digit=[0-9];
whitespace=[\ \t\n];
any= [^];
%%
"print" => (PRINT);
{alpha}{alphaNumUnd}* => (ID(yytext));
{digit}+ => (INT(pluck(Int.fromString(yytext))));
"+" => (OP(Add));
"-" => (OP(Sub));
"*" => (OP(Mul));
"/" => (OP(Div));
"(" => (LPAREN);
")" => (RPAREN);
"," => (COMMA);
";" => (SEMI);
":=" => (GETS);
{whitespace} => (lex());
{any} => ((* Signal a failure exception when encounter unexpected character.
 A more flexible implementation might raise a more refined
 exception that could be handled. *)
 raise Fail(”Slip scanner: unexpected character \"" ^ yytext ^ "\"“)

Definitions

Rules

String matched by
regular expression

Discard current token
and continue lexing

Remove SOME from
option type.

Using ml-lex to Generate a Scanner
[fturbak@sampras slip] ls -al Slip.lex.sml
ls: cannot access Slip.lex.sml: No such file or directory

[fturbak@sampras slip] ml-lex Slip.lex

Number of states = 27
Number of distinct rows = 10
Approx. memory size of trans. table = 1290 bytes

[fturbak@sampras slip] ls -al Slip.lex.sml
-rw-rw---- 1 fturbak fturbak 10277 2008-10-23 09:34 Slip.lex.sml

structure Mlex= struct
 structure UserDeclarations = struct … end
 exception LexError
 structure Internal = struct … end
 fun makeLexer yyinput = …
 fun lex () = …
 end

Contents of the file Slip.lex.sml

Lexical Analysis 22-18

SML Digression: Mutable Cells (References)
- val c = ref 17;
val c = ref 17 : int ref
- c;
val it = ref 17 : int ref
- !c;
val it = 17 : int
- fun add c x = x + !c;
val add_c = fn : int -> int
- add c 10;
val it = 27 : int
- !c;
val it = 17 : int
- c := 42;
val it = () : unit
- add c 10; !c
val it = 42 : int

ref : ‘a -> ‘a ref
 ref <exp> creates a cell whose
 contents is the value of <exp>.

! : ‘a ref -> ‘a
 ! <exp> returns the contents
 of the cell denoted by <exp>.

:= : ‘a ref * ‘a -> unit
 <exp1> := <exp2> changes the
 contents of the cell denoted
 by <exp1> to the value
 denoted by <exp2>.

; : ‘a * ‘b -> ‘b
 <exp1> ; <exp2> first evaluates
 <exp1>, then evaluates <exp2>,
 and then returns the value of
 <exp2>. (The value of <exp1>
 value is discarded).

Lexical Analysis 22-19

Incrementing a cell in SML

- val a = ref 0;
val a = ref 0 : int ref
- val b = ref 0;
val b = ref 0 : int ref
- inc a;
val it = 1 : int
- inc a;
val it = 2 : int
- inc b;
val it = 1 : int
- inc a;
val it = 3 : int
- inc b;
val it = 2 : int

fun inc cell = (cell := !cell + 1; !cell)

Lexical Analysis 22-20

Scanner Utilities
 fun stringToScanner str =
 let val done = ref false
 in Mlex.makeLexer (fn n => if (!done) then ""
 else (done := true; str)
)
 end

 fun fileToScanner filename =
 let val inStream = TextIO.openIn(filename)
 in Mlex.makeLexer (fn n => TextIO.inputAll(inStream))
 end

 fun scannerToTokens scanner =
 let fun recur () =
 let val token = scanner()
 in if Token.isEof(token) then
 []
 else
 token::(recur())
 end
 in recur()
 end

Lexical Analysis 22-21

More Scanner Utilities
 fun printScanner scanner =
 let fun loop () =
 let val token = scanner()
 in if Token.isEof(token) then
 ()
 else
 (print(Token.toString(token) ^ "\n");
 loop())
 end
 in loop()
 end

 (* Below, "o" is ML's infix composition operator. *)
 val stringToTokens = scannerToTokens o stringToScanner
 val fileToTokens = scannerToTokens o fileToScanner
 val printTokensInString = printScanner o stringToScanner
 val printTokensInFile = printScanner o fileToScanner

Lexical Analysis 22-22

Testing our Scanner

- Scanner.fileToTokens "test.slip";
val it =
 [ID "sum", GETS,INT 5, OP Add, INT 3, SEMI, ID "prod", GETS,
 LPAREN, PRINT, LPAREN, ID "sum", COMMA, ID "sum",
 OP Sub, INT 1, RPAREN, COMMA, INT 10, OP Mul, ID "sum",
 RPAREN, SEMI, PRINT, LPAREN, ID "prod", RPAREN, SEMI] :
 Token.token list

sum := 5+3;
prod := (print (sum, sum-1), 10*sum);
print(prod);

Sample program in
file named “test.slip”

Lexical Analysis 22-23

Adding Line Comments

The following ml-lex rule doesn’t work. Why?

"#"{any}*"\n" => (lex() (* read a line comment *));

How can we fix it?

sum := 5+3; # Set sum to 8
prod := (print (sum, sum-1), # First print sum and (sum-1),
 10*sum); # then set prod to 10*sum
print(prod); # Finally print prod

How to add line-terminated comments introduced by #?

Lexical Analysis 22-24

Adding Block Comments

sum := 5+3; # Set sum to 8
prod := (print (sum, sum-1), # First print sum and (sum-1),
 10*sum); # then set prod to 10*sum
{ Comment out several lines:
 x := sum * 2;
 z := x * x; }
print(prod); # Finally print prod

How to add block (multi-line) comments delimited by { and } ?
(They needn’t be nestable yet.)

Lexical Analysis 22-25

Adding Nestable Block Comments

sum := 5+3; # Set sum to 8
prod := (print (sum, sum-1), # First print sum and (sum-1),
 10*sum); # then set prod to 10*sum
{ Comment out several lines:
 x := sum * 2;
 { Illustrate nested block comments:
 y = prod + 3:}
 z := x * x; }
print(prod); # Finally print prod

How to make block (multi-line) comments nestable ?

Can’t do this with regular expressions alone.
Need some extra support !

Lexical Analysis 22-26

Using Lexer States for Nested Comments
(* Keeping track of nesting level of block comments *)
val commentNestingLevel = ref 0

fun incrementNesting() =
 (print "Incrementing comment nesting level";
 commentNestingLevel := (!commentNestingLevel) + 1)

fun decrementNesting() =
 (print "Decrementing comment nesting level";
 commentNestingLevel := (!commentNestingLevel) - 1)
%%
%s COMMENT;
alpha=[a-zA-Z];
alphaNumUnd=[a-zA-Z0-9_];
digit=[0-9];
whitespace=[\ \t\n];
any= [^];
%%
rules shown on next slide

New header
functions

Definitions

Declare a new state
named COMMENT

Lexical Analysis 22-27

Lexer Rules for Nested Comments
<INITIAL>"print" => (PRINT);
<INITIAL>{alpha}{alphaNumUnd}* => (ID(yytext));
<INITIAL>{digit}+ => (INT(pluck(Int.fromString(yytext))));
<INITIAL>"+" => (OP(Add));
<INITIAL>"-" => (OP(Sub));
<INITIAL>"*" => (OP(Mul));
<INITIAL>"/" => (OP(Div));
<INITIAL>"(" => (LPAREN);
<INITIAL>")" => (RPAREN);
<INITIAL>"," => (COMMA);
<INITIAL>";" => (SEMI);
<INITIAL>":=" => (GETS);
<INITIAL>"#".*"\n" => (lex() (* read a line comment *));
<INITIAL>"{" => (YYBEGIN COMMENT; incrementNesting(); lex());
<INITIAL>{whitespace} => (lex());
<COMMENT>"{" => (incrementNesting(); lex());
<COMMENT>"}" => (decrementNesting(); if (!commentNestingLevel) = 0 then
 (YYBEGIN INITIAL; lex()) else lex());
<COMMENT>{any} => (lex());
{any} => ((* Signal a failure exception when encounter unexpected character.
 A more flexible implementation might raise a more refined
 exception that could be handled. *)
 raise Fail(”Slip scanner: unexpected character \"" ^ yytext ^ "\""));

