The Pumping Lemma

A Technique for Proving that Languages are Nonregular

Friday, October 23, 2009
Reading: Sipser 1.4, Stoughton 3.13

Nonregular Languages: Overview

1. Not all languages are regular! As an example, we’ll show the language \(\{0^n1^n \mid n \in \text{Nat} \} \) is not regular.

2. Generalize the technique for #1 by developing the pumping lemma.

3. Give examples of using the pumping lemma (sometimes in conjunction with closure properties of regular languages) to prove-by-contradiction that certain languages aren’t regular.
0^n1^n is Not a Regular Language

Proof by Contradiction: Suppose 0^n1^n is a regular language. Then it is accepted by a DFA. Suppose the DFA has k states.

Now consider the labeled path for accepting the string 0^k1^k:

By the pigeonhole principle, 2 of the first k+1 states must be the same:

So the path has the form:

where a + b + c = k and b > 0

This means the DFA also accepts strings 0^n0^i0^c1^k for any i ∈ Nat. But for i ≠ 1, these strings do not have the form 0^n1^n for some n. This contradicts the assumption that there is a DFA for 0^n1^n.

The Pumping Lemma 20-3

Generalizing the Technique: Intuition

Suppose L is an infinite regular language.

Any regular expression for L must contain a "nontrivial" * (i.e., after weak simplification).

So it is accepted by an FA (and a DFA) with at least one loop.

Any sufficiently long string s ∈ L must traverse some loop, and so can be decomposed into xyz, where y is nonempty and xy'z ∈ L for any i ∈ Nat.

We say that the substring y of s can be pumped.

The Pumping Lemma 20-4
Generalizing the Technique: The Pumping Lemma

If L is a regular language, there is a number p (the pumping length) such that any string $s \in L$ with length $\geq p$ can be expressed as xyz, where:

1. $|y| > 0$
2. $|xy| \leq p$
3. $xyz \in L$ for each $i \in \mathbb{N}$.

Proof sketch: Let p be the number of states in a DFA for L and q be the first repeated state in the path for s (which must exist by the pigeonhole principle). Use q to divide s into xyz.

Using the Pumping Lemma to Prove L Nonregular

The pumping lemma says every sufficiently long string in a regular language has a parse that can be pumped and still be in the language.

To prove a language nonregular, just need to find one counterexample string!

Towards a contradiction, assume L is regular.

By the pumping lemma, there is a p such that all strings $s \in L$ with length $\geq p$ can be pumped.

Find some string $s \in L$ with length $\geq p$ for which pumping is problematic. I.e., every decomposition of s into xyz with $|y| > 0$ and $|xy| \leq p$ leads to a string $xyz \notin L$ for some $i \in \mathbb{N}$.

Therefore, the assumption that L is regular is false. \times
Game vs. Demon

Using the pumping lemma to prove a language nonregular can be viewed as a game vs. a demon:

1. **You**: give the demon the language L
2. **Demon**: gives you p
3. **You**: give the demon string $s \in L$ with $|s| \geq p$.
4. **Demon**: divides s into xyz such that $|y| > 0$ and $|xy| \leq p$
5. **You**: give the demon an i such that $xy^iz \not\in L$.

$L_1 = \{0^n1^n \mid n \in \text{Nat}\}$ revisited

Viewed as game vs. a demon:

1. **You**: give the demon the language L_1
2. **Demon**: gives you p
3. **You**: give the demon a string $s \in L_1$ with $|s| \geq p$. E.g.:

 $s_1 = 0^{p/2}1^{p/2}$ (for simplicity, assume p is even)

 $s_2 = 0^p1^p$
4. **Demon**: divides s into xyz such that $|y| > 0$ and $|xy| \leq p$.
5. **You**: give the demon an i such that $xy^iz \not\in L_1$

Moral: Since you get to pick string s, choose one that saves you work!
L₂ = \{w \mid w \text{ has equal } \# \text{ of } 0s \text{ and } 1s\}

1. You: give the demon the language L₂
2. Demon: gives you p
3. You: give the demon a string s ∈ L₂ with |s| ≥ p.
 Which ones below work?
 \begin{align*}
 s₁ &= 0^{p/2}1^{p/2} \\
 s₂ &= 0^p1^p \\
 s₃ &= (01)^p
 \end{align*}
4. Demon: divides s into xyz such that |y| > 0 and |xy| ≤ p
5. You: give the demon an i such that xyiz ∉ L₂

Moral: not all strings s work! (But just need one.)

L₂: A Simpler Approach using Closure Properties

Suppose L₂ is regular.

Then L₂ \cap 0^*1^* is regular. Why?

So L₂ can’t be regular. Why?

Moral: Closure properties of regular languages are helpful for proving languages nonregular!
Intuition: Regular Languages “Can't Count”

Intuitively, the pumping lemma says that regular languages (equivalently, finite automata) can't count arbitrarily high - they’ll get confused beyond k = the number of states.

This is why \(L_1 \) and \(L_2 \) aren't regular:

\[
L_1 = \{0^n1^n \mid n \in \text{Nat}\}
\]
\[
L_2 = \{w \mid w \text{ has equal # of 0s and 1s}\}
\]

But be careful! This intuition can sometimes lead you astray!

For example, the following languages are regular:

\[
\{w \mid w \text{ in } \{0,1\}^* \text{ and has equal # of 01s and 10s}\} \text{ (PS4)}
\]
\[
\{1^k y \mid y \text{ in } \{0,1\}^* \text{ and } y \text{ contains at least } k \text{ 1s, for } k \geq 1\} \text{ (PS7)}
\]

Pumping Down: \(L_3 = \{0^i1^j \mid i > j\} \)

1. You: give the demon the language \(L_3 \)
2. Demon: gives you \(p \)
3. You: give the demon what string \(s \in L_3 \) with \(|s| \geq p \)?

4. Demon: divides \(s \) into \(xyz \) such that \(|y| > 0 \) and \(|xy| \leq p \)

5. You: give the demon an \(i \) such that \(xy^iz \in L_3 \)

Moral: Sometimes \(i \) needs to be 0. This is called "pumping down".
$L_4 = \{ww \mid w \in \{0,1\}^*\}$

1. You: give the demon the language L_4
2. Demon: gives you p
3. You: give the demon what string $s \in L_4$ with $|s| \geq p$?

4. Demon: divides s into xyz such that $|y| > 0$ and $|xy| \leq p$

5. You: give the demon an i such that $xy^iz \not\in L_4$.

Moral: Again, choosing s carefully can save you lots of work!

$L_5 = \{1^{n^2} \mid n \geq 0\}$

1. You: give the demon the language L_5
2. Demon: gives you p
3. You: give the demon what string $s \in L_5$ with $|s| \geq p$?

4. Demon: divides s into xyz such that $|y| > 0$ and $|xy| \leq p$

5. You: give the demon an i such that $xy^iz \not\in L_5$.

Moral: Arithmetic details matter!