
11/24/2009

1

Introduction to
Shift/Reduce Parsing

CS235 Languages and Automata

Procrastination is Good

Tuesday, November 24, 2009
Reading: Appel 3.3

Department of Computer Science
Wellesley College(Lyn before a CS235 lecture!)

Postponing decisions with a stack
o LL(k) parsing techniques must

predict which production to use
based on the next k tokens.

input: + c + d

o Today, we study so-called LR(k)
parsers, which postpone the
decision until it has seen input
tokens of the entire right-hand
side of the production in
question.

o Postponement is achieved by

stack:

+

T

T

F

b
E

Shift/Reduce Parsing 32-2

p y
pushing tokens and partially-built
parse trees on a stack. This
allows “seeing” more input before
making decisions, and building
left-recursive trees in a bottom-
up fashion.

F

a

11/24/2009

2

Rose Trees: A Motivational Example

Appel uses $
instead of EOF

Productions are
numbered for

easy reference Parse tree for (x, (x))$
S’

0 S’  S $
1 S  (L)
2 S  x
3 L  S
4 L  L , S

GRoseTree
(l’ G)

S

S $

L

S,

()

(

L

Shift/Reduce Parsing 32-3

(Appel’s Grammar 3.20) L()

S

x

Examples:

x$ (x)$ (x,x)$ (x,x,x)$

(x,(x))$ (((x,x),(x)),x,((x,x,x,x)))$

S

x

GRoseTree is Not LL(k) (i.e., not Predictive)

0 S’  S $
1 S  (L)

GRoseTree

x (
S’ S’  S $ S’  S $

LL(1) Parsing Table

()
2 S  x
3 L  S
4 L  L , S

S S  S $ S  S $
S S  x S  (L)
L L  S

L  L , S
L  S

L  L , S

• GRoseTree is not LL(1)

Shift/Reduce Parsing 32-4

• Not LL(k) for any k!

• Isn’t there a better way?

11/24/2009

3

A Better Way: Shift/Reduce Parsing (LR(k))
o The state of the parser (a configuration) has two components:

1. The still-to-be-processed input tokens

2. A stack of tokens and parse trees for
the already processed tokens

o On each step of the parsing process, one of two actions occurs:

1. The first input token is shifted to the top of the stack.

2. The top k stack elements are reduced to a variable
according to a production in the grammar.

o Parsing succeeds if there is a configuration where the

Shift/Reduce Parsing 32-5

o Parsing succeeds if there is a configuration where the
stack contains only the “real” start symbol of the grammar
(S, not S’) after all input tokens except $ have been processed.

o Shift/reduce (LR(k)) parsing is more powerful than predictive (LL(k))
parsing because the decision of what to do next can take into
account the stack elements as well as the next few input tokens

A Sample Configuration

Here’s a sample intermediate configuration from parsing (x,(x))$
along with some abbreviations:

input:

stack:

(

(

,

L

x)) (, (! x))L

S

x

(, (! x))L

(To be more consistent with Appel’s
 h ld d

Shift/Reduce Parsing 32-6

(S

x

notatation, we should use a period
rather than an exclamation point to
separate stack and input, but the
period is too hard to see.)

11/24/2009

4

An Example: Parsing (x,(x))$
! (x , (x)) $

 (! x , (x)) $ shift (

 (x ! , (x)) $ shift x (x ! , (x)) $ shift x

 (! , (x)) $ reduce S → x

 (L ! , (x)) $ reduce L → S, where

 (L , ! (x)) $ shift ,

S

x

1 1

=L L

S

Shift/Reduce Parsing 32-7

 (L , (! x)) $ shift (

 (L , (x !)) $ shift x

1

1

1

x

Parsing (x,(x))$ (Continued)
(L , (x !)) $

 (L , (!)) $ reduce S → x

1

S

1

=L L

S

 (L , (L !)) $ reduce L → S

 (L , (L) !) $ shift)

 (L S !) $ reduce S (L) where

x
1

1 1

1 1

=

x

S S

Shift/Reduce Parsing 32-8

 (L , S !) $ reduce S → (L) , where

 (L !) $ reduce L → L , S , where

1 2 2

=S S

L()
1

3 3

=L L

,L S
1 2

11/24/2009

5

Parsing (x,(x))$ (Continued Again)
(L !) $

 (L) ! $ shift)
3 3

=L L

S,L

 S ! $ reduce S → (L) , where

By convention, this is an accepting state
(we never reduce S’ → S $)

L()

S

x

S

x

3

4

S

L()

S
4

=

3

Shift/Reduce Parsing 32-9

A Rightmost Derivation of (x, (x))$
S’  S $ by S’ → S $

 (L) $ by S → (L)

 (L , S) $ by L → L , S (L , S) $ by L L , S

 (L , (L)) $ by S → (L)

 (L , (S)) $ by L → S

 (L , (x)) $ by S → x

 (S , (x)) $ by L → S

 (x , (x)) $ by S → x

Shift/Reduce Parsing 32-10

 (x , (x)) $ by S x

Observe that our shift/reduce parsing example for (x, (x))$ performs the
productions of the rightmost derivation precisely in reverse order.

If we had constructed a derivation rather than a parse tree, we would have
constructed precisely the rightmost derivation.

11/24/2009

6

LR(k) Parsing

A context-free grammar is LR(k) iff it can be parsed by a
shift/reduce parser using k tokens of lookahead from the input.

In LR(k) In LR(k)

• The L means that the tokens are processed Left-to-right

• The R means that the result of parsing is a parse tree
constructed via a Rightmost derivation.

As in LL(k) parsing, LR(k) parsing is guided by a parsing table, as
we’ll see soon.

W ’ll th t G i LR(0) th d ’t t ll d

Shift/Reduce Parsing 32-11

We’ll see that GRoseTree is LR(0) : the parser doesn’t actually need
to look at any input tokens in order to determine whether to shift
or reduce. It makes this decision based on the stack alone.

But there are LR grammars that require nonzero lookahead.

Shift-Reduce Example: Postfix Expressions

S → E $

E ID(st) | INT(i t) | E E | E E *

Examples:
2 3 * 4 + $ E → ID(str) | INT(int) | E E + | E E * 3 $
2 3 4 * + $

Shift/Reduce Parsing 32-12

11/24/2009

7

Infix Expressions Revisited

S → E $

E → INT(int) | E + E | E * E | E ^ E

GIntExpAmbig

• ^ is an exponentiation operator

• leave out – , /, and (E) for simplicity

• precedence: + < * < ^

• associativity:
+ and * are left associative+ and * are left associative
^ is right associative

(Why? If left associative, then
x ^ y ^ z = (x^y)^z = x^(y*z).
So x^(y^z) expresses something different)

Shift/Reduce Parsing 32-13

Shift-Reduce Parsing of Integer Expressions
When shift-reduce parsing integer expressions, we must choose
between shifting an input token and reducing a production RHS on the
stack. The choice for +|*|^ is determined by precedence/associativity.

stack next token shift or reduce?
1 INT(i)
2 … E +|*|^ INT(i)
3 … INT(i) +|*|^|$
3 E +|*|^
4 … E +|*|^ E +
5 E + E *5 … E + E
6 … E *|^ E *
7 … E +|*|^ E ^
8 … E +|*|^ E $
9 E $

Shift/Reduce Parsing 32-14

11/24/2009

8

Example
Using the rules in the table, parse the following expression
using a shift-reduce parser:

1 + 2 * 3 ^ 4 ^ 5 * 6 + 7 $

Shift/Reduce Parsing 32-15

Manually Building a Shift-Reduce Parser in SML
Based on the shift-reduce table, we can build a shift-reduce parser for integer
expressions in SML (~cs235/download/intexp-parsers/IntexpParserInfix.sml)

datatype stkval = Tok of token
| Exp of exp

(* step: (stackval list) * (token list) -> exp *)
and step([Exp(e)], []) = e (* final parsed expression *)

(* Reduce binapps on stack when reach end of input *)
| step(Exp(e2)::Tok(OP(binop))::Exp(e1)::stk, []) =
step(Exp(BinApp(binop,e1,e2))::stk, []) (*reduce*)

(* Integer token cases *)
| step([], INT(i)::toks) =
step([Exp(Int(i))], toks) (*shift*)

| step(Tok(OP(binop))::Exp(e)::stk, INT(i)::toks) =
step(Exp(Int(i))::Tok(OP(binop))::Exp(e)::stk, toks) (*shift*)

(* Always shift operator onto singleton stack *)
| step([Exp(e)], OP(binop)::toks) =
step([Tok(OP(binop)),Exp(e)], toks) (*shift*)

Shift/Reduce Parsing 32-16

11/24/2009

9

AShift-Reduce Parser in SML (cont.)
(* Always reduce binapp on stack when see Add/Sub token *)

| step(Exp(e2)::Tok(OP(binop))::Exp(e1)::stk, OP(addop as (Add|Sub))::toks) =
step(Exp(BinApp(binop,e1,e2)) ::stk, OP(addop) ::toks) (*reduce*)

(* Mul/Div token cases *)
(* Case 1: Shift Mul/Div if lower precedence binapp is on stack *)
| step(Exp(e2)::Tok(OP(addop as (Add|Sub)))::Exp(e1)::stk,

OP(l (M l|Di)) t k)OP(mulop as (Mul|Div))::toks) =
step(Tok(OP(mulop))::Exp(e2)::Tok(OP(addop))::Exp(e1)::stk, toks) (*shift*)

(* Case 2: Reduce binapp if equal or higher precedence
(If previous pattern didn't apply, then below binop must be Mul/Div/Expt) *)

| step(Exp(e2)::Tok(OP(binop))::Exp(e1)::stk, OP(mulop as (Mul|Div))::toks) =
step(Exp(BinApp(binop,e1,e2)) ::stk, OP(mulop) ::toks)

(* Always shift an Expt token *)
| step(Exp(e2)::Tok(OP(binop))::Exp(e1)::stk, OP(Expt)::toks) =

step(Tok(OP(Expt))::Exp(e2)::Tok(OP(binop))::Exp(e1)::stk, toks) (*shift*)

(* All other configurations are ill-defined *)
| step(stk, toks) = | p(,)

raise Fail ("Unexpected configuration:"
^ "\nstack = " ^ (ListUtils.listToString stkvalToString stk)
^ "\ntoken = " ^ (ListUtils.listToString Token.toString toks))

(* top-level function to convert string to exp *)
fun stringToExp str = step([], Scanner.stringToTokens str)

Shift/Reduce Parsing 32-17

A Parsing Table for GRoseTree

() x , $ S L
1: s3 s2 g4
2: x r2 r2 r2 r2 r2
3 (3 2 7 5

0 S’  S $
1 S  (L) te

s

tokens variables

GRoseTree

3: (s3 s2 g7 g5
4: S a
5: (L s6 s8
6: (L) r1 r1 r1 r1 r1
7: (S r3 r3 r3 r3 r3
8: (L , s3 s2 g9
9: (L , S r4 r4 r4 r4 r4

2 S  x
3 L  S
4 L  L , S

to
p

of
 s

ta
ck

 s
ta

t

sk shifts configuration … (i: … ) ! tT to … (k:  t) ! T

rn reduces configuration … (i: … ) (j: ) ! T to … (k: …  V) ! T, where
the nth production is V →  and in state i, V goes to k via gk

a accepts the configuration S ! $, where S is the “real” start symbol
Shift/Reduce Parsing 32-18

11/24/2009

10

More About Parsing Tables

() x , $ S L
1: s3 s2 g4
2: x r2 r2 r2 r2 r2
3 (3 2 7 5te

s

tokens variables

0 S’  S $
1 S  (L)

GRoseTree

3: (s3 s2 g7 g5
4: S a
5: (L s6 s8
6: (L) r1 r1 r1 r1 r1
7: (S r3 r3 r3 r3 r3
8: (L , s3 s2 g9
9: (L , S r4 r4 r4 r4 r4

to
p

of
 s

ta
ck

 s
ta

t

2 S  x
3 L  S
4 L  L , S

Stack states can be determined by an FA reading stack elements bottom up.
This table is LR(0) because the decision about whether to shift or reduce is
based only on stack state.
Many of the reduce entries in this table are bogus (no valid configuration)

Shift/Reduce Parsing 32-19

Table-Guided LR Parsing

1 ! (x , (x)) $
 1 (3 ! x , (x)) $
 1 (3 x 2 ! , (x)) $
 1 (3 S 7 ! , (x)) $ reduce by rule 2: S → x
 1 (3 L 5 ! , (x)) $ reduce by rule 3: L → S
 1 (3 L 5 , 8 ! (x)) $ shift ,
 1 (3 L 5 , 8 (3 ! x)) $ shift (
 1 (3 L 5 , 8 (3 x 2 !)) $ shift x
 1 (3 L 5 , 8 (3 S 7 !)) $ reduce by rule 2: S → x
 1 (3 L 5 , 8 (3 L 5 !)) $ reduce by rule 3: L → S3 5 8 3 5 y
 1 (3 L 5 , 8 (3 L 5) 6 !) $ shift)
 1 (3 L 5 , 8 S 9 !) $ reduce by rule 1: S → (L)
 1 (3 L 5 !) $ reduce by rule 4: L → L , S
 1 (3 L 5) ! $ shift)
 1 S 4 ! $ reduce by rule 1: S → (L)
 accept!

Shift/Reduce Parsing 32-20

11/24/2009

11

A hierarchy of grammar classes

o Sandwiched between LR(0)
and LR(1) are two categories
SLR and LALR(1) that involve SLR and LALR(1) that involve
particular kinds of tables
(which we don’t have time to
study this semester; see
Appel 3.3 for details.

o LALR(1) has become the
standard for programming
languages and for automatic
parser generators.

Shift/Reduce Parsing 32-21

parser generators.
o There is a parser construction

tool, called YACC, that can
automate the construction of
LALR(1) parsers.

