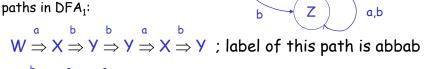

Deterministic Finite Automata (DFAs)

Friday, October 1, 2010

Reading: Sipser Sec. 1.1 (required), Kozen Ch. 3 (optional)

CS235 Languages and Automata

Department of Computer Science Wellesley College


A deterministic finite automaton (DFA) is a kind of directed graph with labeled edges. It has:

- a set of nodes (states): {W,X, Y,Z}
- an alphabet to label the edges (transitions): {a, b}
- a unique start state: W
- a set of final states: {X} (here only one, but can be any number)
- every node must have exactly one labeled out-edge for every symbol in alphabet (transition function). Multiple edges between the same two states are sometimes drawn as one edge with multiple labels.

Labeled Paths

A labeled path in a DFA is any path in which each edge is labeled by the symbol on the transition taken.

Here are some labeled

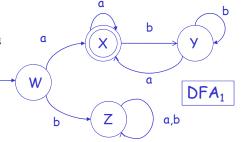
 $\textbf{Z} \Rightarrow \textbf{Z} \Rightarrow \textbf{Z} \Rightarrow \textbf{Z}$; label of this path is baa

Y; label of this path is ϵ

The label of a path is the concatenation of all the edge symbols.

In a DFA, for any state Q and string s there is a unique labeled path labeled s starting at Q.

DFAs 12-3


DFA₁

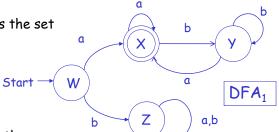
Ь

Accepting/Rejecting Strings

A DFA accepts a string siff the unique labeled path from its start state with label s ends in a final state.

Otherwise the DFA Star rejects the string (i.e., the unique path labeled s ends in a nonfinal state).

DFA₁ accepts abbabaa via $W \Rightarrow X \Rightarrow Y \Rightarrow Y \Rightarrow X \Rightarrow Y \Rightarrow X \Rightarrow X$

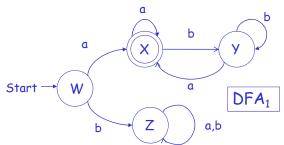

 $\mathsf{DFA}_1 \text{ rejects abb via } \mathsf{W} \overset{a}{\Rightarrow} \mathsf{X} \overset{b}{\Rightarrow} \mathsf{Y} \overset{b}{\Rightarrow} \mathsf{Y}$

DFA₁ rejects babba via $W \overset{b}{\Rightarrow} Z \overset{a}{\Rightarrow} Z \overset{b}{\Rightarrow} Z \overset{b}{\Rightarrow} Z \overset{a}{\Rightarrow} Z$

A dead state is a state (like Z) that guarantees rejection if reached.

Regular Language = Language of a DFA

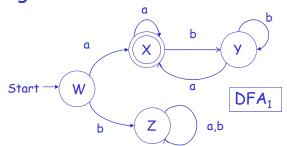
The **language** of a DFA is the set of all strings it accepts.



A language is **regular** iff there is some DFA that accepts it.

How would you describe the language of DFA1 in English?

DFAs 12-5


Another Formalization of DFAs

A DFA is a quintuple $(Q, \Sigma, \delta, s, F)$

1.	Q is a finite set of states	({W,X,Y,Z} ,
2.	Σ is an alphabet	{a, b} ,
3.	δ is a transition function in $ {\bf Q} {\bf x} \Sigma \to {\bf Q} $	see next slide,
4.	s in Q is a start state	W,
5.	$F \subseteq \mathcal{Q}$ is a set of final states	{X})

Specifying The Transition Function $\boldsymbol{\delta}$

δ as a table:

	α	Ь
W	X	Z
X	X	У
У	X	У
Z	Z	Z

 δ as a triple:

$$\begin{aligned} &(\{W,X,Y,Z\} \times \{a,b\},\\ &\{W,X,Y,Z\},\\ &\{\; ((W,a),\,X),\, ((W,b),\,Z),\\ &\; ((X,a),\,X),\, ((X,b),\,Y),\\ &\; ((Y,a),\,X),\, ((Y,b),\,Y),\\ &\; ((Z,a),\,Z),\, ((Z,b),\,Z)\, \end{aligned}$$

DFAs 12-7

Designing Some DFAs

Design DFAs for each of the following languages in $\{a,b\}^*$:

- 1. All strings beginning with a
- 2. All strings ending in a
- 3. All strings that begin with a or end in a
- 4. All strings that begin and end with the same symbol

More DFAs

Design DFAs for each of the following languages in $\{0,1\}^*$:

- 1. All strings that contain 001, 010, or 111
- 2. All binary numerals that are multiples of 3.