
1

DFA Operations
Complement, Product, Union,

Intersection, Difference, Equivalence

CS235 Languages and Automata

Wednesday, October 6 and Friday, October 8, 2010
Reading: Sipser pp. 45-46, Stoughton 3.11 – 3.12

and Minimization of DFAs

CS235 Languages and Automata

Department of Computer Science
Wellesley College

Some DFAs
Here are some simple DFAs we will use as examples in today’s lecture.
What languages do they accept?

L
a

K

DFA5

B
a
a

b b

A

DFA1

a aDFA2

F
b

a b

E

DFA3

G
a

a,b

b aDFA4
a,b

LbK

M
b a

a,b

DFA6

DFA Operations 14-2

D
b
bC I

a
H J

b O
a
bN

P
b a

a,b

2

Complement of DFAs
If DFA accepts language L, then L is accepted by DFA,
a version of DFA in which the accepting and
non-accepting states have been swapped.

L
a

K

DFA5

B
a
a

b b

A

DFA1

F
b

a b

E

DFA3

G
a

a,b
LbK

M
b a

a,b

DFA5

DFA Operations 14-3

B
a
a

b b

A

DFA1

F
b

a b

E

DFA3

G
a

a,b
L

a
bK

M
b a

a,b

DFA Complement in Forlan
- val dfa1 = DFA.input “begin_and_end_with_a.dfa";
val dfa1 = - : dfa

- DFA.complement;
val it = fn : dfa * sym set -> dfay

- val dfa1_comp = DFA.complement (dfa1, SymSet.fromString "a,b");
val dfa1_comp = - : dfa

- SymSet.toString (DFA.states dfa1_comp);
val it = "W, X, Y, <dead>" : string

- SymSet.toString (DFA.acceptingStates dfa1_comp);
val it = "W, Y, <dead>" : string

DFA Operations 14-4

- DFA.output ("dfa_begin_and_end_with_a_comp.dfa",
dfa_comp);

val it = () : unit

3

We can run two DFAs in parallel on the same input via the
product construction, as long as they share the same alphabet.

Suppose DFA1 = (Q1, , 1, s1, F1) and DFA2 = (Q2, , 2, s2, F2)

W d fin DFA x DFA s f ll s:

Product of DFAs

()

We define DFA1 x DFA2 as follows:

States: Q1x2 = Q1 x Q2

Alphabet: 
Transitions:

1x2  Q1x2 x   Q1x2

 (((q q) )) rr

q2q1



(,)


DFA Operations 14-5

(,)1x2 (((q1,q2), ))
= (1((q1,)), 2((q2,))

Start State: s1x2 = (s1, s2)

Final States: Definition depends on how we use product

r2r1

Sample Products

B
a
a

b b

A

DFA1

F
b

a b

E

DFA3

G
a

a,b

D
b
b

a a

C

DFA2

I
a

b a

H

DFA4

J
b

a,b

DFA1 x DFA2

a (E H) (E I)a (F J)b
a bDFA3 x DFA4

DFA Operations 14-6

(A , D)

(A , C) (B , C)

(B , D)

a

a

a

b b b b
(F , H)

(E , H) (E , I)

(G , I)a
b

b

(F , J)

(G , J)b

a

a

a,b

4

Practice

B
a
a

b b

A

DFA1

F
b

a b

E

DFA3

G
a

a,b

DFA1 x DFA3

DFA Operations 14-7

Intersection of DFAs
We can intersect DFA1 and DFA2 (written DFA1  DFA2) by
defining the accepting states of DFA1 x DFA2 as those state
pairs in which both states are final states of their DFAs.

(A D)

DFA1  DFA2

(A , C) (B , C)

(B D)

a

a

ab b b b
(F , H)

(E , H) (E , I)

(G , I)

a

a
b

(F , J)

(G , J)

b
a

b

b

a

DFA3  DFA4

DFA Operations 14-8

(A , D) (B , D)a
b

a
a,b

5

Union of DFAs
We can union DFA1 and DFA2 (written DFA1  DFA2) by
defining the accepting states of DFA1 x DFA2 as those state
pairs in which either state is a final state of its DFA.

(A D)

DFA1  DFA2

(A , C) (B , C)

(B D)

a

a

ab b b b
(F , H)

(E , H) (E , I)

(G , I)

a

a
b

(F , J)

(G , J)

b
a

b

b

a

DFA3  DFA4

DFA Operations 14-9

(A , D) (B , D)a
b

a
a,b

Difference of DFAs
The difference of two DFAs (written DFA1 − DFA2) can be defined

in terms of complement and intersection:
DFA1 − DFA2 = DFA1  DFA2

DFA1 − DFA2

(A C) (B C)
a

a
(E , H) (E , I)a (F , J)b

a b
DFA3 − DFA4

So we can take the difference of DFA1 and by defining the final
states of DFA1 − DFA2 as those state pairs in which the first state
is final in DFA1 and the is second state is not final in DFA2.

DFA Operations 14-10

(A , D)

(A , C) (B , C)

(B , D)

a

a

a

b b b b
(F , H) (G , I)a

b

b

(G , J)b

a

a

a,b

6

What is a Closure Property?

A set S is closed under an n-ary operation f
iff x1,…, xn  S implies f(x1,…, xn)  S

Examples:

• Bool is closed under negation, conjunction, disjunction.

• Nat is closed under + and * but not – and /.

CFL Properties 14-11

• Int is closed under +, *, and -, but not /.

• Rat is closed under +, *, -, and / (except division by 0).

Some Closure Properties of Regular Languages

Recall that a language is regular iff there is a
DFA that accepts it.

Based on the previous DFA constructions, we know the p ,
following closure properties of regular languages.

Suppose L1 and L2 are regular languages. Then:

• L1 and L2 are regular;

• L1  L2 is regular;

 l

DFA Operations 14-12

• L1  L2 is regular;
• L1 − L2 and L2 − L1 are regular.

7

Are Any of the Following DFAs Equivalent?

L
a
bK

DFA5

O
a
bN

DFA6

Sa

b

R

DFA7

Q a
b

M
b a

a,b

b

P
b a

a,b

a

T
b

b

a,b

a
U

a,b

DFA Operations 14-13

DFA5 and DFA6 are Not Equivalent

L
a

K

DFA5

O
a

N

DFA6

Look at their product!

LbK

M
b a

a,b

ObN

P
b a

a,b

DFA5 x DFA6DFA5 accepts 
but DFA6 doesn’t

DFA6 accepts a
but DFA5 doesn’t

DFA Operations 14-14

(K , N) (L , O)
a

(M , P)

b
b a

a,b

but DFA6 doesn t

8

DFA5 and DFA7 Are Equivalent

L
a
bK

DFA5

S

b

R

DFA7

Q a

Look at their product!

LbK

M
b a

a,b

DFA5 x DFA7

SaR

T
b

b

a,b

Q
a

a b

U
a,b

DFA Operations 14-15

(K , Q) (K , S)

(M , T)

b

b a

a,b

(L , R)
a

(M , U)
a,b

a

DFA Equivalence Algorithm
To determine if DFA1 and DFA2 are equivalent, construct DFA1 x
DFA2 and examine all state pairs containing at least one accepting
state from DFA1 or DFA2:

• If in all such pairs, both components are accepting, DFA1 and If in all such pairs, both components are accepting, DFA1 and
DFA2 are equivalent --- i.e., they accept the same language.

• If in all such pairs, the first component is accepting but in some
the second is not, the language of DFA1 is a superset of the
language of DFA2 and it is easy to find a string accepted by
DFA1 and not by DFA2

• If in all such pairs, the second component is accepting but in
 th fi t i t th l f DFA i b t f th

DFA Operations 14-16

some the first is not, the language of DFA1 is a subset of the
language of DFA2, and it is easy to find a string accepted by
DFA2 and not by DFA1

• If none of the above cases holds, the languages of DFA1 and
DFA2 are unrelated, and it is easy to find a string accepted by
one and not the other.

9

Products in Forlan
val inter : dfa * dfa -> dfa

val minus : dfa * dfa -> dfa

datatype relationshipyp p

= Equal | Incomp of str * str | ProperSub of str | ProperSup of str

val relation : dfa * dfa -> relationship

val relationship : dfa * dfa -> unit

val subset : dfa * dfa -> bool

val equivalent : dfa * dfa -> bool

DFA Operations 14-17

q

Note that a union operator is missing. It really should be there!
We’ll see later how it can be defined.

Forlan Products: Example

- val bwa = DFA.input "begin_with_a.dfa";
val bwa = - : dfa

- val ewa = DFA.input "end_with_a.dfa";
val ewa = - : dfa

- val baewa = DFA.inter(bwa,ewa);
val baewa = - : dfa

- DFA.output("baewa.dfa", baewa);
val it = () : unit

DFA Operations 14-18

10

Forlan Products: Example (Continued)
- val dfa1 = DFA.input "begin_and_end_with_a.dfa";
val dfa1 = - : dfa

- DFA.relationship(baewa, dfa1);
languages are equallanguages are equal
val it = () : unit

- DFA.relation(baewa, dfa1);
val it = Equal : DFA.relationship

- DFA.relation(bwa, baewa);
val it = ProperSup [-,-] : DFA.relationship

- let val DFA.ProperSup s = it in Str.toString s end;

DFA Operations 14-19

stdIn:19.9-19.29 Warning: binding not exhaustive
ProperSup s = ...

val it = "ab" : string

- DFA.subset(baewa, bwa);
val it = true : bool

Minimal DFAs

L
a
bK

DFA5

b

Sa

b

R

DFA7

b
b

Q a

a
M

b a

a,b

• A DFA is minimal if it has the smallest number
of states of any DFA accepting its language.

• Is DFA5 minimal?

T
b

a,b
U

a,b

DFA Operations 14-20

Is DFA5 minimal?

• Is DFA7 minimal?

11

State Merging

L
a
bK

DFA5

b

Sa

b

R

DFA7

b
b

Q a

a
M

b a

a,b

• A DFA is not minimal iff two states can be merged to form a
single state without changing the meaning of the DFA.

• Final states and non-final states can never be merged.

T
b

a,b
U

a,b

DFA Operations 14-21

• Can merge two states iff for each symbol they transition to
mergeable states.

• Which states in DFA7 can be merged?

State Merging in DFA7

Merge T with USa

b

R

DFA7

b
Q a

a

Sa

b

R

b

Q a

a

Merge Q with S

T
b

b

a,b

a
U

a,b

b

a,b
{ T,U }

a

b

DFA Operations 14-22

a R

b
a,b

a

{T,U}

{ Q ,S }

12

Problem: States Can’t Always be Merged Iteratively

DFA8

a a

WV a
b

b

Simultaneously merge
V with X and W with Y

Y

Z

b

a,b

X
a

a b

a
{W,Y}{ V , X }ab

Z
a,b

b a

DFA Operations 14-23

Key to solution: rather than iterating to find mergeable state pairs,
iterate to find all state pairs that are provably unmergeable.
Then any remaining state pair is mergeable.

This is an example of a greatest fixed point iteration, in which
items are assumed related unless proven otherwise.

DFA Minimization Algorithm: Step 1

Sa

b

R

DFA7

b
b

Q a

a

List all pairs of states than must
not be merged = pairs of one final
and one non-final state.

Other pairs might be mergeable;
th id d bl

UsQ

T
b

a,b
U

a,b

they are considered mergeable
until proven otherwise.

It’s a good idea to keep track of
state pairs in half of a table*:

U T
?
S R

Unmergeable by string sUsUsUs

DFA Operations 14-24

?R
S
T

* Lyn adapted this table representation from Katie Sullivan (Olin)
and the subscripted Unmergeability from Anna Loparev (Wellesley)

MightBeMergeable

? Table1

Us

UsUs

? ?

13

DFA Minimization Algorithm: Step 2

Sa

b

R

DFA7

b
b

Q a

a

Change from MightBeMergeable to Unmergeable
any pair (A,B) such that there is a transition to a
(C,D) in Unmergeable:

(,)BAMightBeMergeable

T
b

a,b
U

a,b(,)DC

a aa

Unmergeable

Repeat this step until no more state pairs can be changed.

In Table2, In Table1 pairsU T S R U T S R

DFA Operations 14-25

(R,T)  (S,T)
b

(R,U)  (S,T)
b

In Table2,
no pairs can
be changed

In Table1, pairs
(R,T) and (R,U)
be changed:

Q U

R
S
T

?
? U

U U

?

?
U U

Table1

Q U

R
S
T

?
Ub U

U U

Ub

?
U U

Table2

DFA Minimization Algorithm: Step 3
When no more pairs can be changed from MightBeMergeable to
Unmergeable, merge the pairs remaining in MightBeMergeable.

Q
U
U

T

M

S R

U UQ
U
U

T

?

S R

U U
Us Unmergeable by s

abDFA7 Merge Q with S
b

M Mergeable

? MightBeMergeable
Q U

R
S
T

M
Ub U

U U

Ub

M
U U

Table2

Q U

R
S
T

?
Ub U

U U

Ub

?
U U

Table2

a

DFA Operations 14-26

SaR

7

T
b

b

a,b

Q a

a
U

a,b

g Q
and T with U R

b
a,b

a

{T,U}

{ Q ,S }

14

DFA Minimization: More Practice
DFA8

X
a

WV a
b

b Merge V with X
and W with Y

{W,Y}{ V ,W }
a

b

Y

Z

b

a,b

X
a

ab

V
Z
U

Y
?

X W

U U
Z
U

Y
?

X W

U U
Z
U

Y X W

Z
a,b

ab

a

DFA Operations 14-27

V U

W
X
Y

?
? U

U U

?

?
U U

Table1

V U

W
X
Y

?
? U

U U

Ub

Ub

U U

Table2

V U

W
X
Y

M
M U

U U

Ub

Ub

U U

Table3

Both examples happen to converge after 1 iteration of step 2,
but in general can take 0 to (|Q|-1) iterations.

Minimization in Forlan
val minimize : dfa -> dfa

DFA Operations 14-28

