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DFA Operations
Complement, Product, Union, 

Intersection, Difference, Equivalence 

CS235 Languages and Automata

Wednesday, October 6 and Friday, October 8, 2010
Reading: Sipser pp. 45-46, Stoughton 3.11 – 3.12

and Minimization of DFAs

CS235 Languages and Automata

Department of Computer Science
Wellesley College

Some DFAs  
Here are some simple DFAs we will use as examples in today’s lecture.
What languages do they accept? 
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Complement of DFAs  
If DFA accepts language L, then L is accepted by DFA, 
a version of DFA in which the accepting and 
non-accepting states have been swapped. 
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DFA Complement in Forlan
- val dfa1 = DFA.input “begin_and_end_with_a.dfa";
val dfa1 = - : dfa

- DFA.complement;
val it = fn : dfa * sym set -> dfay

- val dfa1_comp = DFA.complement (dfa1, SymSet.fromString "a,b");
val dfa1_comp = - : dfa

- SymSet.toString (DFA.states dfa1_comp);
val it = "W, X, Y, <dead>" : string

- SymSet.toString (DFA.acceptingStates dfa1_comp);
val it = "W, Y, <dead>" : string

DFA Operations 14-4

- DFA.output ("dfa_begin_and_end_with_a_comp.dfa", 
dfa_comp);

val it = () : unit
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We can run two DFAs in parallel on the same input via the 
product construction, as long as they share the same alphabet. 

Suppose DFA1 = (Q1, , 1, s1, F1) and DFA2 = (Q2, , 2, s2, F2) 

W  d fin  DFA x DFA s f ll s: 

Product of DFAs  

( )

We define DFA1 x DFA2 as follows: 

States: Q1x2 = Q1 x Q2

Alphabet:  
Transitions:

1x2  Q1x2  x   Q1x2

 ( ((q q ) ) ) rr

q2q1



(  ,  )

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(  ,  )1x2 ( ((q1,q2), ) )
= ( 1( (q1,) ), 2( (q2,) )

Start State: s1x2 = (s1, s2)

Final States:  Definition depends on how we use product

r2r1

Sample Products 
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Practice 
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Intersection of DFAs 
We can intersect DFA1 and DFA2 (written DFA1  DFA2) by 
defining the accepting states of DFA1 x DFA2 as those state 
pairs in which both states are final states of their DFAs. 
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Union of DFAs 
We can union DFA1 and DFA2 (written DFA1  DFA2) by 
defining the accepting states of DFA1 x DFA2 as those state 
pairs in which either state is a final state of its DFA. 
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Difference of DFAs 
The difference of two DFAs (written DFA1 − DFA2) can be defined 

in terms of complement and intersection: 
DFA1 − DFA2 = DFA1  DFA2 

DFA1 − DFA2
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So we can take the difference of DFA1 and by defining the final 
states of DFA1 − DFA2 as those state pairs in which the first state
is final in DFA1 and the is second state is not final in DFA2. 
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What is a Closure Property?  

A set S is closed under an n-ary operation f 
iff  x1,…, xn  S implies f(x1,…, xn)  S

Examples: 

• Bool is closed under negation, conjunction, disjunction.

• Nat is closed under + and * but not – and /. 

CFL Properties 14-11

• Int is closed under +, *, and -, but not /. 

• Rat is closed under +, *, -, and / (except division by 0). 

Some Closure Properties of Regular Languages

Recall that a language is regular iff there is a 
DFA that accepts it.

Based on the previous DFA constructions, we know the p ,
following closure properties of regular languages.

Suppose L1 and L2 are regular languages. Then:

• L1 and L2 are regular; 

• L1  L2 is regular; 

 l  
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• L1  L2 is regular; 
• L1 − L2 and L2 − L1 are regular.
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Are Any of the Following DFAs Equivalent?  

L
a
bK

DFA5

O
a
bN

DFA6

Sa

b

R

DFA7

Q a
b

M
b a

a,b

b

P
b a

a,b

a

T
b

b

a,b

a
U

a,b

DFA Operations 14-13

DFA5 and DFA6 are Not Equivalent
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DFA5 and DFA7 Are Equivalent
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( M , T )

b

b a

a,b

( L , R )
a

( M , U )
a,b

a

DFA Equivalence Algorithm
To determine if DFA1 and DFA2 are equivalent,  construct DFA1 x 
DFA2 and examine all state pairs containing at least one accepting 
state from DFA1 or DFA2:

• If in all such pairs, both components are accepting, DFA1 and If in all such pairs, both components are accepting, DFA1 and 
DFA2 are equivalent --- i.e., they accept the same language.

• If in all such pairs, the first component is accepting but in some 
the second is not, the language of DFA1 is a superset of the 
language of DFA2 and it is easy to find a string accepted by 
DFA1 and not by DFA2

• If in all such pairs, the second component is accepting but in 
 th  fi t i  t  th  l  f DFA i   b t f th  

DFA Operations 14-16

some the first is not, the language of DFA1 is a subset of the 
language of DFA2,  and it is easy to find a string accepted by 
DFA2 and not by DFA1

• If none of the above cases holds, the languages of DFA1 and 
DFA2 are unrelated, and it is easy to find a string accepted by 
one and not the other. 
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Products in Forlan
val inter : dfa * dfa -> dfa

val minus : dfa * dfa -> dfa

datatype relationshipyp p

= Equal | Incomp of str * str | ProperSub of str | ProperSup of str

val relation : dfa * dfa -> relationship

val relationship : dfa * dfa -> unit

val subset : dfa * dfa -> bool

val equivalent : dfa * dfa -> bool

DFA Operations 14-17

q

Note that a union operator is missing. It really should be there!
We’ll see later how it can be defined. 

Forlan Products: Example

- val bwa = DFA.input "begin_with_a.dfa";
val bwa = - : dfa

- val ewa = DFA.input "end_with_a.dfa";
val ewa = - : dfa

- val baewa = DFA.inter(bwa,ewa);
val baewa = - : dfa

- DFA.output("baewa.dfa", baewa);
val it = () : unit

DFA Operations 14-18
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Forlan Products: Example (Continued)
- val dfa1 = DFA.input "begin_and_end_with_a.dfa";
val dfa1 = - : dfa

- DFA.relationship(baewa, dfa1);
languages are equallanguages are equal
val it = () : unit

- DFA.relation(baewa, dfa1);
val it = Equal : DFA.relationship

- DFA.relation(bwa, baewa);
val it = ProperSup [-,-] : DFA.relationship

- let val DFA.ProperSup s = it in Str.toString s end;

DFA Operations 14-19

stdIn:19.9-19.29 Warning: binding not exhaustive
ProperSup s = ...

val it = "ab" : string

- DFA.subset(baewa, bwa);
val it = true : bool

Minimal DFAs
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• A DFA is minimal if it has the smallest number
of states of any DFA accepting its language.  

• Is DFA5 minimal?  
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Is DFA5 minimal?  

• Is DFA7 minimal? 
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State Merging
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• A DFA is not minimal iff two states can be merged to form a 
single state without changing the meaning of the DFA. 

• Final states and non-final states can never be merged. 
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• Can merge two states iff for each symbol they transition to 
mergeable states. 

• Which states in DFA7 can be merged?  

State Merging in DFA7
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Problem: States Can’t Always be Merged Iteratively
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Key to solution: rather than iterating to find mergeable state pairs, 
iterate to find all state pairs that are provably unmergeable.   
Then any remaining state pair is mergeable.

This is an example of a greatest fixed point iteration, in which 
items are assumed related unless proven otherwise.   

DFA Minimization Algorithm: Step 1 
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they are considered mergeable 
until proven otherwise. 

It’s a good idea to keep track of 
state pairs in half of a table*: 

U T
?
S R

Unmergeable by string sUsUsUs
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?R
S
T

* Lyn adapted this table representation  from Katie Sullivan (Olin)
and the subscripted Unmergeability from Anna Loparev (Wellesley)

MightBeMergeable

? Table1

Us

UsUs

? ?
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DFA Minimization Algorithm: Step 2 
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any pair (A,B) such that there is a transition to a 
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Repeat this step until no more state pairs can be changed.

In Table2, In Table1  pairsU T S R U T S R

DFA Operations 14-25

(R,T)   (S,T)
b
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b

In Table2, 
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DFA Minimization Algorithm: Step 3 
When no more pairs can be changed from MightBeMergeable to 
Unmergeable,  merge the pairs remaining in  MightBeMergeable.

Q
U
U

T

M

S R

U UQ
U
U

T

?

S R

U U
Us Unmergeable by s

abDFA7 Merge Q with S
b

M Mergeable

? MightBeMergeable
Q U

R
S
T

M
Ub U

U U

Ub

M
U U

Table2

Q U

R
S
T

?
Ub U

U U

Ub

?
U U

Table2

a

DFA Operations 14-26

SaR

7

T
b

b

a,b

Q a

a
U

a,b

g Q
and T with U R

b
a,b

a

{T,U}

{ Q ,S }



14

DFA Minimization: More Practice 
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Both examples happen to converge after 1 iteration of step 2, 
but in general can take 0 to (|Q|-1) iterations.  

Minimization in Forlan
val minimize : dfa -> dfa
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