Properties of Context-Free Languages

A Pumping Lemma for CFLs and CFL Closure Properties

Tuesday, November 9, 2010 Reading: Sipser 2.3, Stoughton 4.7, 4.10;

CS235 Languages and Automata

Department of Computer Science Wellesley College

Overview of Today's Lecture

- o Develop a pumping lemma for CFLs.
- Use the pumping lemma for CFLs to show that certain languages are not CFLs.
- Review closure properties for regular languages and discuss closure properties for context-free languages.

Height and # Leaves of Binary Trees

What is the maximum number of leaves in a binary tree of height h?

height	# leaves
0	
1	
2	
3	
h	

CFL Properties 26-3

Chomsky Normal Form Parse Trees

What is the maximum length of a string yielded by a Chomsky Normal Form parse tree of height h?

$$\begin{array}{|c|c|c|} \hline U \rightarrow VW & V \rightarrow a \\ V \rightarrow VV & W \rightarrow b \\ W \rightarrow WX & X \rightarrow c \\ \hline \end{array}$$

height	length
1	
2	
3	
h	

CFL Properties

Minimum Height of CNF Parse Tree

What is the minimum height of a CNF parse tree for a string of length 2k?

$$\begin{array}{|c|c|c|} \hline U \rightarrow VW & V \rightarrow \alpha \\ V \rightarrow VV & W \rightarrow b \\ W \rightarrow WX & X \rightarrow c \\ \hline \end{array}$$

length	height
20 = 1	
21 = 2	
2 ² = 4	
2 ^k	

The Pumping Lemma for CFLs

The Pumping Lemma for Context-Free Languages

If L is a context-free language, there is a number p(the pumping length) such that any string s with length $\geq p$ can be expressed as *uvwxy*, where:

- 1. |vx| > 0 (at least one of v or x is nonempty)
- $2. |vwx| \leq p$
- 3. $uv^iwx^iy \in L$ for each $i \in Nat$.

CFL Properties 26-7

CF-pumpability

Let's rephrase the CFL pumping lemma in terms of a property we'll call CF-pumpability (Lyn's term, not standard).

```
A language is CF-pumpable iff
There exists some p (the pumping length) s.t.
 for all strings s with length \geq p
   there exists a parsing of s into uvwxy, where
        1. |vx| > 0 (at least one of v or x is nonempty)
        2. |vwx| \leq p
      s.t. for all i \in Nat, uv^iwx^iy \in L
```

Then the pumping lemma for CFLs can be rephrased as:

```
L is context-free \Rightarrow L is CF-pumpable
```

Proving that a Language isn't Context Free

CFL Pumping Lemma: L is context-free \Rightarrow L is **CF**-pumpable

Contrapositive: L is not CF-pumpable \Rightarrow L is not context free

How to show L is not CF-pumpable?

For all p (the pumping length) there exists some string s with length $\geq p$ s.t. for all parsings of s into uvwxy, where:

- 1. |vx| > 0 (at least one of v or x is nonempty)
- $2. |vwx| \leq p$

there exists some $i \in Nat$ s.t. $uv^iwx^iy \notin L$

CFL Properties 26-9

Games vs. Demons, Revisited

Suppose you want to prove that a language L is not context-free. The proof (by contradiction) can be viewed as a game with a demon:

- 1. You: give the demon the language L.
- 2. Demon: gives you the pumping length p.
- 3. You: give the demon a string s with $|s| \ge p$.
- 4. Demon: divides s into uvwxy such that |vx| > 0 and $|vwx| \le p$. (Warning: typically more cases to consider than in nonregular language proofs!)
- 5. You: win if you can give the demon an i such that $uvwx'y \notin L$.

$L_1 = O^n 1^n 2^n$ is not a CFL

Viewed as game vs. a demon:

- 1. You: give the demon the language $L_1 = \{0^n1^n2^n \mid n \text{ in Nat}\}$
- 2. Demon: gives you the pumping length p
- 3. You: give the demon what string s with $|s| \ge p$?
- 4. Demon: divides s into uvwxy such that |vx| > 0 and $|vwx| \le p$. What are the possible divisions for your s?
- 5. You: win if you give the demon an i such that $uv^iwx^iy \notin L_1$.

CFL Properties 26-11

$L_2 = \{O^{j}1^k2^n \mid j \le k \le n\}$ is not a CFL

Viewed as game vs. a demon:

- 1. You: give the demon the language $L_2 = \{0^{j}1^{k}2^{n} \mid j \leq k \leq n\}$
- 2. Demon: gives you the pumping length p
- 3. You: give the demon what string s with $|s| \ge p$?
- 4. Demon: divides s into uvwxy such that |vx| > 0 and $|vwx| \le p$. What are the possible divisions for your s?
- 5. You: win if you give the demon an i such that $uv^iwx^iy \notin L_2$.

$L_{ww} = \{ww \mid w \in \{0,1\}^*\}$ is not a CFL

Viewed as game vs. a demon:

- 1. You: give the demon the language $L_{ww} = \{ww \mid w \text{ in } \{0,1\}^*\}$
- 2. Demon: gives you the pumping length p
- 3. You: give the demon what string s with $|s| \ge p$? (Hint: 0^p10^p1 doesn't work!)
- 4. Demon: divides s into uvwxy such that |vx| > 0 and $|vwx| \le p$. What are the possible divisions for your s?
- 5. You: win if you give the demon an i such that $uv^iwx^iy \notin L_{ww}$.

 CFL Properties 26-13

Lww is a CFL!

Surprise: $L_{ww} = \{ww \mid w \in \{0,1\}^*\}$ isn't a CFL, but its complement is!

Why? Can construct a CFG that accepts $\overline{L_{ww}}$.

 $\overline{L_{ww}}$ = {s | s \in {0,1}* isn't of the form ww for some w \in {0,1}*}

- \bullet Which odd-length strings are in $\overline{L_{ww}}\text{?}$ Write a CFG generating them.
- Which even-length strings are in $\overline{L_{ww}}$? Write a CFG generating them.

Review: Closure Properties for Regular Languages

Suppose L, L_1 , and L_2 are regular languages. Then all the following are regular languages:

- · L1L2
- · L*
- ۰ ً
- $\boldsymbol{\cdot} \; L_1 \cup L_2$
- $\boldsymbol{\cdot} \ L_1 \cap L_2$
- L₁ L₂
- LR

CFL Properties 26-15

Closure Properties for CFLs

Suppose L, L_1 , and L_2 are CFLs. Then all the following are CFLs:

- L₁L₂
- · L₁*
- $\boldsymbol{\cdot} \, L_1 \cup L_2$
- L₁^R

How can we prove these closure properties? (Suppose A generates L_1 and B generates L_2 . How to generate results of operations?)

More Forlan Gram Bindings

```
val union : gram * gram -> gram
                                      (* union of two grammars *)
 val concat: gram * gram -> gram (* concatentation of two grammars *)
                                      (* Kleene closure of two gramars *)
 val closure : gram -> gram
 val rev : gram -> gram
                                      (* reversal of two grammars *)
- Gram.output ("", L1gram);
{variables}
A, B, S
{start variable}
{productions}
A -> % | OA1; B -> % | 1B0; S -> AB
val it = () : unit
- Gram.output ("", Gram.rev L1gram);
{variables}
A, B, S
{start variable}
{productions}
A -> % | 1AO; B -> % | OB1; S -> BA
val it = () : unit
                                                                CFL Properties 26-17
```

What about Complement & Intersection?

```
CFLs are not closed under intersection.

Counterexample:

Both 0<sup>n</sup>1<sup>n</sup>2<sup>m</sup> and 0<sup>m</sup>1<sup>n</sup>2<sup>n</sup> are CFLs,,
but 0<sup>n</sup>1<sup>n</sup>2<sup>m</sup> ∩ 0<sup>n</sup>1<sup>n</sup>2<sup>m</sup> = 0<sup>n</sup>1<sup>n</sup>2<sup>n</sup> is not.

CFLs are not closed under complement.

Counterexample:

Let L<sub>ww</sub> = {ww | w in {0,1}*}.

We've seen L<sub>ww</sub> is a CFL but L<sub>ww</sub> is not.

Can also prove this by contradiction: use deMorgan to show that CFLs closed under complement implies CFL closed under intersection.

CFLs are not closed under difference.
```

Counterexample: $\{0,1\}^*$ and L_{ww} are CFLs, but not $L_{ww} = \{0,1\}^* - L_{ww}$

Intersecting a CFL with a Regular Language

CFLs are closed under intersection with a regular language:

If L is a CFL and R is a regular language, then $L \cap R$ is a CFL

We won't prove this yet - need our next topic (pushdown automata) to do this.

Examples:

Let L_{0eq1} = {w | w in {0,1}* contains equal # of 0s & 1s}

- L_{0eq1} ∩ 0*1* =
- L_{0eq1} ∩ 0*1*0* =
- L_{ww} \cap 0*110* =
- Use this property to prove that the following language is not context free: {w | w in {0,1,2}* and w contains equal numbers of 0s, 1s, and 2s}.