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Recursively Enumerable Languages

L(M) = {w | w is accepted by the
Turing Machine M}

The recursively enumerableThe recursively enumerable
(r.e.) languages = the set of all 
languages that are the language 
of some Turing Machine. 

These are also called 
Turing-acceptable and
Turing-recognizable languages. 

RE = Recursively Enumerable
(Turing-Recognizable/Acceptable) 
Languages

CFL = Context-Free Languages

anbncn ww
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g g g g

We will use RE to name this set.

There are many languages in 
RE that are not in CFL. 

g g

Reg = Regular Languages

a*b* (a+b)*bbb(a+b)*

anbn wwR
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Decidability and Semi-Decidability

RE = Recursively Enumerable
(Turing-Recognizable/Acceptable) 
Languages

A Turing Machine decides a language if it 
rejects every string it doesn’t accept – i.e., it 
never loops

The recursive languages = the set  of all 
languages that are decided by some Turing 
M hi   ll l  d ib d b   

Dec = Recursive (Turing-Decidable) 
Languages

CFL = Context-Free Languages

anbn wwR

anbncn ww

 semi-decidable+

 decidable

Machine = all languages described by a non-
looping TM.

These are also called theTuring-decidable or 
decidable languages. 

We will use Dec to name this set.

We’ll soon see examples of languages that are 
in RE but not in Dec.  We call these languages 
semi-decidable+.  

Reg = Regular Languages

a*b* (a+b)*bbb(a+b)*

Every TM for a semi-decidable+ language halts 
in the accept state for strings in the language 
but loops for some strings not in the language. 

Any language outside Dec is undecidable.
All semi-decidable+ languages are undecidable, 
but we’ll see there are undecidable languages 
that aren’t semi-decidable+!
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Dec vs. RE

accept pipe

For every language L in Dec, there is a deciding machine M
that for an input string w is guaranteed to deliver a ball to
either the accept pipe or reject pipe. 

Turing Machine M for
a language L in Dec

accept pipe

reject pipe

input string w

For every language L in RE, there is an accepting machine M
that for an input string w is guaranteed to deliver a ball to
the accept pipe if w  L.  However, if w  L, a ball might not

Turing Machine M for
a language L in RE

accept pipe

reject pipe

input string w

p p p , , g
be delivered to the reject pipe (M might loop). 
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Game Plan for the Rest of this Lecture

RE = Recursively Enumerable
(Turing-Recognizable/Acceptable) 
Languages

Our main goal is to exhibit a language L 
that’s semi-decidable+: L in RE — Dec.

But first:

Dec = Recursive (Turing-Decidable) 
Languages

CFL = Context-Free Languages

anbn wwR

anbncn ww

 semi-decidable+

 decidable

1. we’ll need to get some practice 
describing decidable languages that
involve language encodings. 

Then:
2. we’ll define a language HALTTM that’s    

in RE — Dec.

Fi ll  
Reg = Regular Languages

a*b* (a+b)*bbb(a+b)*

Finally: 
3. we’ll argue that there are languages

that aren’t even in RE!
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Language Encodings
We will consider many languages whose strings contain encodings
of DFAs, FAs, NPDAs, CFGs, and TMs.  Think of such encodings as 
Forlan-like specifications for these machines and grammars.  E.g. :

ba<DFA1> =

X Y

W

b

b

a

DFA
Z a,b

b

a

1
“({W,X,Y,Z},
{a,b}
W, 
{X,Z},
{W,a -> X; W,b -> Z;
X,a -> X; X,b -> Y;
Y,a -> X; Y,b -> Y;
Z a > Z; Z b > Z})”

states

start states
final states

alphabet

32-6

DFA1
Z,a -> Z; Z,b -> Z})

transition function

S → AB
A → 0A1 | %
B → 1B0 | %

<CFG1> =
“({S,A,B},   

{0,1},      
{(S,AB), (A,0A1), (A,%)
(B,1B0), (B,%)})”

CFG1

variables (start var first)
terminals

productions Decidable and Undecidable Languages
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Warm-Up: Some Decidable Languages
Show that the following languages are decidable by describing (at a 
high level) an algorithm that decides them (see more in Sipser 4.1)

ACCEPT   {( DFA  ) |  i  i  L(DFA)}

string describing a pair of (1) a deterministic 
finite automaton DFA and  (2) an input string w

• ACCEPTDFA =  {(<DFA>, w) | w is in L(DFA)}

• EMPTYDFA =  {<DFA> | L(DFA) = }

• ALLDFA =  {<DFA> | L(DFA) = DFA*}

• EQDFA =  {(<DFA1>, <DFA2>) | L(DFA1) = L(DFA2)}

• ACCEPTCFG =  {(<CFG>, w) | w is in L(CFG)}

• EMPTYCFG = {<CFG> | L(CFG) = }

(Warning:  EQCFG and ALLCFG  are not decidable! )

32-7Decidable and Undecidable Languages

What about ACCEPTTM?
ACCEPTTM =  {(<M>, w) | w is in L(M) (i.e. M accepts w)}

A Turing Machine MUTM can accept ACCEPTTM as follows:

1. Check if <M> is a well-formed Turing Machine description.
If not, MUTM rejects (<M>, w)

string describing a Turing Machine M and an input string w

If not, MUTM rejects ( M , w)

2. If <M> is well-formed, MUTM simulates the running of M on w,
e.g., via a 4-tape machine:
• Tape 1 holds <M>.
• Tape 2 is the tape M works on (initially w).
• Tape 3 holds the head position for tape 2.
• Tape 4 holds the state of M.

In this case, MUTM will: 
• accept <<M>, w> iff M accepts w. 
• reject <<M>, w> iff M rejects w. 
• loop iff M loops on w.

So ACCEPTTM is in RE.

Big question: is ACCEPTTM in Dec? I.e., is there another Turing Machine    
that decides ACCEPTTM ? (We’ll see the answer is no.)

32-8Decidable and Undecidable Languages
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MUTM is a Universal Turing Machine!
MUTM is a universal Turing Machine

= a Turing Machine interpreter written as a Turing Machine.

There’s nothing strange about this: 

• We can write an SML interpreter in any language, including SML.

• We can write a Java compiler in any language, including Java.

• Why not write a Turing Machine interpreter as a Turing Machine? 

The tricky bit is bootstrapping (take CS251 for more details): 

• Our first SML interpreter can’t be written in SML;

• Our first Java compiler can’t be written in Java.

32-9Decidable and Undecidable Languages

Self-Reference is not a Problem
Consider the following:

• A decommenting program can decomment any text file,
including the decommenting program itself. 

• A Java compiler can compile any Java program, including one
that specifies a Java compiler. 

• An SML interpreter can evaluate any SML program,  
including one that specifies an SML interpreter. 

Moral: There is nothing inherently problematic about a program
being called on “itself”. The program supplied as an argument is 
just data  and the running program P doesn’t “know” that this data just data, and the running program P doesn t know  that this data 
describes P!

You can’t eat yourself, but you can eat a description of yourself!

What does MUTM do on the input (<MUTM >, (<M>,w) ) ?

32-10Decidable and Undecidable Languages
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The Halting Problem
HALTTM =  {(<M>, w) | M halts on w (i.e. M decides w, cannot loop)}

Is HALTTM in RE (Turing-acceptable)?

Yes: Simulate M running on w. Accept if M accepts or rejects w. 
Loop if M loops on w.

Is HALTTM in Dec (decidable)?

No! We’ll show this by diagonalization.  Intuitively, the problem 
is that no TM for HALTTM can always reject (<M>, w) when 
M loops on w. 

So HALTTM is semi-decidable+; our first example of such a language.

In the next lecture, we’ll see that we can use HALTTM to show that 
other languages are semi-decidable+, including ACCEPTTM. 

32-11Decidable and Undecidable Languages

Behavior of Turing Machines
The behavior of all Turing machines can be summarized by an 
infinite 2D table whose rows are Turing machines and whose 
columns are input strings.  A table entry is A (accept), R (reject), 
or L (loop). 

% a … z aa … zz …
M1 A R … A L … R …
M2 R L R R R

Because TM descriptions are countable, TMs are enumerable in a 
sequence M1, M2, M3, … 

input strings

hi
ne

s

M2 R L … R R … R …
M3 A A … R L … A …
M4 L L … A A … R …
M5 R A … R A … L …
… … … … … … … … …

Tu
ri

ng
 M

ac

32-12Decidable and Undecidable Languages
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Towards Diagonalization
With diagonalization in mind, we focus on the subtable that
results from keeping only those columns in whose input strings
are valid TM descriptions. 

<M1> <M2> <M3> <M4> <M5> …
M1 R A L A L …
M2 A A A A A …
M3 L L L L L …
M4 A L A A R …

inputs that are TM descriptions
ri

ng
 M

ac
hi

ne
s

M5 A R L A L …
… … … … … … …

Tu
r

32-13Decidable and Undecidable Languages

Suppose HALTTM Is Decidable 
If HALTTM is decidable, then there is a Turing Machine MHALT
that, for all inputs <<M>,w>, decides if M halts on w. 

<M > <M > <M > <M > <M >
inputs that are TM descriptions

<M > <M > <M > <M > <M >
inputs that are TM descriptions

<M1> <M2> <M3> <M4> <M5> …
M1 R A L A L …
M2 A A A A A …
M3 L L L L L …
M4 A L A A R …
M5 A R L A L …
… … … … … … …

Tu
ri

ng
 M

ac
hi

ne
s <M1> <M2> <M3> <M4> <M5> …

<M1> A A R A R …
<M2> A A A A A …
<M3> R R R R R …
<M4> A R A A A …
<M5> A A R A R …

… … … … … … …

TM
 d

es
cr

ip
ti

on
s

Behavior of MHALT   on inputs 
of the form (<Mi>,<Mj>)

Behavior of Turing Machines on
inputs that are TM descriptions 

32-14Decidable and Undecidable Languages



8

Diagonalization for HALTTM
If MHALT exists, then there is another machine MDIAG defined as:

MDIAG(<M>) = if MHALT( (<M>,<M>) ) then reject else accept

MDIAG inverts every entry on the diagonal of MHALT.

Because MDIAG is a TM, it must appear in the list of descriptions. But it can’t!Because MDIAG s a M, t must appear n the l st of descr pt ons. But t can t!
What is MDIAG(< MDIAG >) ?

So the assumption that MHALT exists is false, and HALTTM isn’t decidable. 

<M1> <M2> <M3> <M4> <M5> … <MDIAG>
<M1> A A R A R …
<M2> A A A A A …

inputs that are TM descriptions

pt
io

ns

Behavior of MHALT  
on inputs of the <M3> R R R R R …

<M4> A R A A A …
<M5> A A R A R …

… … … … … … …
<MDIAG> R R A R A ???

TM
 d

es
cr

ip on inputs of the 
form (<Mi>,<Mj>)
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Alternative Diagonalization for HALTTM
We can instead perform the diagonalization on the original table of
Turing machine behaviors

If MHALT exists, then there is another machine M’DIAG defined as:

M’DIAG(<M>) = if MHALT( (<M>,<M> ) ) then loop else acceptM DIAG( M )  if MHALT( ( M , M  ) ) then loop else accept

M’DIAG inverts every entry on the diagonal of the table, leading to a 
contradiction. 

<M1> <M2> <M3> <M4> <M5> … <M’DIAG>
M1 R A L A L …
M2 A A A A A …

inputs that are TM descriptions

ch
in

es Behavior of 
Turing Machines on

M3 L L L L L …
M4 A L A A R …
M5 A R L A L …
… … … … … … …

M’DIAG L L A L A ???

Tu
ri

ng
 M

ac

Turing Machines on
inputs that are 
TM descriptions

32-16Decidable and Undecidable Languages
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The Halting Problem in Scheme*
Suppose we could write a function halts? that determines
if an input function f halts when applied to its argument f:

(define (halts? f x) …)

h   ld  h  f llThen we could write the following:

(define (loop) (loop))

(define (diag f)  (if (halts? f f) (loop) #t))

Suppose (diag diag) halts. Then it should loop!

Suppose (diag diag) loops. Then it should halt with #t!

This accurately captures the diagonalization dilemma, but is a bit 
hokey since a Scheme halts? function can’t examine the structure 
of the input function in the way that a Turing Machine MHALT can 
examine the structure of a TM description. 

* It’s tougher to show this in SML because its type system prohibits self-application.
32-17Decidable and Undecidable Languages

So What? Does the Halting Problem Matter? 
Yes!  Compilers and other programs that analyze programs often
want to perform termination analysis to determine whether or not 
the evaluation of a particular subexpression will terminate.

E g  it’s often helpful to evaluate a subexpression  but only safe to E.g., it s often helpful to evaluate a subexpression, but only safe to 
do so if evaluation will terminate (otherwise, the compiler might 
not terminate!) 

Sadly, the halting problem says there is no iron-clad way to 
determine in advance whether or not subexpression evaluation will 
terminate.  

We’ll see later that various heuristics can be used, but they can 
l  i l  i   i i  l i  only conservatively approximate exact termination analysis. 

We’ll also see that most forms of program analysis suffer from 
the same problems as termination analysis.

32-18Decidable and Undecidable Languages
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With Great Power Comes Great Uncomputability 

Turing machines and equivalent models of computation 
(lambda calculus, Java, SML, etc.) are far more 
powerful than finite automata and pushdown automata.  p p

But the power is gained via 
features that can cause
programs to loop infinitely. 
If we want the power,
we must live with the 
looping  looping. 

32-19Decidable and Undecidable Languages

Programs that loop vs. taking a long time

How do we distinguish programs that run a long
time from ones that loop?

E g  3x+1 problem:E.g. 3x+1 problem:

f(x) =

Problem: for all n  is there some i s t  fi(n) = 1?  I e  is 

3x + 1,   if x is odd
x/2,      if x is even

Problem: for all n, is there some i s.t. f (n) = 1?  I.e., is 
it the case that iterating f at a starting point never 
loops?   

No one knows!  This is an open problem!

32-20Decidable and Undecidable Languages
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Are there non-RE Languages? 

RE = Recursively Enumerable
(Turing-Recognizable/Acceptable) 

Our next big question: are there 
any languages that are not RE?

We’ll see the answer is yes  

 Is there any language out here? 

g g p
Languages

Dec = Recursive (Turing-Decidable) 
Languages

CFL = Context-Free Languages

anbncn ww

 semi-decidable+

 decidable

We ll see the answer is yes. 
In fact, way yes (lots of them!)  

HALTTM

Reg = Regular Languages

a*b* (a+b)*bbb(a+b)*

anbn wwR
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Dec is Closed Under Complement
Suppose M is a Turing Machine that decides L.

We can construct a machine M that decides L : 

accept

reject

input string w
M

M

accept

reject

32-22Decidable and Undecidable Languages
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RE is NOT Closed Under Complement

accept

Suppose M accepts L and M accepts L .
Then L is decidable (by M’ below)!

accept
accept

reject

input string w
M

M’

reject

M
accept

reject
M’

So if L is semi-decidable+ (L in RE - Dec), then L can’t be in RE!

Important detail: M and M must be run in parallel, not sequentially!
See next slide.

32-23Decidable and Undecidable Languages

Digression: How to Run Two TMs in Parallel?

We often want to run two accepting 
machines M1 and M2 on the same or 
different inputs.

Th  hi  h ld t b   

input string w1 M1

accept

reject

The machines should not be run 
sequentially (say M1 before M2)
because if M1 loops, M2 will never run.

Instead, the machines are run 
in parallel by performing one step of 
M1 followed by one step of M2, 
alternating between the two machines. 

M2

accept

reject

input string w2

After each step, we can check 
whether either machine is in its 
accept state or reject state. So it’s 
possible to run M1 and M2 in parallel 
until one accepts, both accept, one 
rejects, or both reject. 

32-24Decidable and Undecidable Languages
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Complementary, My Dear Watson
co-RE is the set of languages whose complements are RE.
If L is semi-decidable+ (in RE — Dec), 

then L is semi-decidable- (in co-RE — Dec).

We’ll say L is semi-decidable if it’s semi-decidable+ or semi-decidable-We ll say L is semi decidable if it s semi decidable+ or semi decidable

Dec = 
Recursive 

 anbncn

 ww

 decidableRE = 
Recursively Enumerable 
(Turing Recognizable/    

co-RE = Languages 
with RE Complements

 LDec  LDec

 Lsemi+  Lsemi+  Lsemi- Lsemi-

 semi-decidable+  semi-decidable-

(Turing-Decidable) 
Languages

(Turing Recognizable/    
Acceptable) Languages

with RE Complements

32-25Decidable and Undecidable Languages

Not-Even-Semidecidable Languages 
Any Turing Machine can be described as a string in * (for an appropriate ),

states#inputAlphabet#tapeAlphabet#transitions#start#accept#reject
We can enumerate all possible Turing Machine descriptions, so

RE and co-RE must be countable. 

But we know that Lan = P(*) is an uncountable set.

So Lan – (RE U co-RE) must contain many languages. We’ll call these languages
not-even-semidecidable.  We’ll see concrete examples of these next lecture.

D

Lan  not-even-semidecidable
For an not-even-
semidecidable 
language  every Turing DecRE co-RE

 decidable semi-decidable+  semi-decidable-

language, every Turing 
Machine must loop for 
some strings in the 
language and some not 
in the language.

32-26Decidable and Undecidable Languages
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What We’re Aiming For 

Lan  not-even-semidecidable
 EQTM

 HALTTM

 ACCEPTTM Dec

RE co-RE

 decidable
 semi-decidable+  semi-decidable-

 HALTTM

 ACCEPTTM



















Note: undecidable = 
semi-decidable+ U semi-decidable- U not-even-semidecidable 
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Closure Properties of Dec and RE
Dec is closed under:

• union

• intersection

RE is closed under:

• union

• intersection

• concatenation

• Kleene star

• complement

• concatenation

• Kleene star

We’ve already seen the complement story:
• L in Dec implies L in Dec  • L in Dec implies L in Dec. 
• L and L are in RE implies L and L in Dec.
• L is semi-decidable+ (in RE — Dec) 

and L semi-decidable- (in co-RE — Dec) 
Now we’ll study the other properties 

32-28Decidable and Undecidable Languages
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RE is Closed Under Union
Suppose L1, L2 are accepted by machines M1, M2, respectively.
L1  L2 is accepted by the following machine M, which 
runs M1 and M2 in parallel until one accepts or both reject. 

accept
accept

reject

input string w
M1

M

accept

reject

M2
accept

reject

one

both

It i  ti l t   M d M i  ll l   Wh ?It is essential to run M1 and M2 in parallel.  Why?

A similar diagram shows Dec is closed under union, 
but in that case M1 and M2 can be run sequentially. Why? 

Similar arguments (PS10) show RE, Dec are closed under intersection.  

32-29Decidable and Undecidable Languages

RE is Closed Under Concatenation
Suppose L1, L2 are accepted by machines M1, M2, respectively. L1 @ L2 is 
accepted by the following machine M@, which runs copies of M1 and M2 in 
parallel on all possible decompositions of w into pairs of substrings until one 
pair accepts or all reject. 

accept

j t

input string w
= a1a2…an

M1

M2

one

ll

both

one

…

M1

M2

both

one

M1 both
reject

M@
all

This diagram can be implemented by a Turing Machine program that 
loops over all possible decompositions, interleaving the steps for each. 

Similar ideas show that Dec is closed under concatenation and that both
RE and Dec are closed under Kleene star.     

M2 one

32-30Decidable and Undecidable Languages


