The Pumping Lemma

A Technique for Proving that Languages are Nonregular

> Thursday, October 18, 2012 Reading: Sipser 1.4, Stoughton 3.13

CS235 Languages and Automata

Department of Computer Science Wellesley College

Nonregular Languages: Overview

1. Not all languages are regular! As an example, we'll show the language $\{\tilde{O}^n 1^n \mid n \text{ in Nat}\}$ is not regular.

- 2. Generalize the technique for #1 by developing the **pumping lemma**.
- 3. Give examples of using the pumping lemma (sometimes in conjunction with closure properties of regular languages) to prove-by-contradiction that certain languages aren't regular.

The Pumping Lemma 20-2

Oⁿ1ⁿ is Not a Regular Language

Proof by Contradiction: Suppose Oⁿ1ⁿ is a regular language. Then it is accepted by a DFA. Suppose the DFA has k states.

Now consider the labeled path for accepting the string O^k1^k:

By the pigeonhole principle, 2 of the first k+1 states must be the same:

So the path has the form: 0^{b} 0^{c} 1^{k} where a + b + c = k and b > 0

This means the DFA also accepts strings $O^{a}O^{ib}O^{c}1^{k}$ for any $i \in Nat$. But for $i \neq 1$, these strings do not have the form $O^n 1^n$ for some *n*. This contradicts the assumption that there is a DFA for $O^{n}1^{n}$. X

The Pumping Lemma 20-3

Generalizing the Technique: Intuition

Suppose L is an infinite regular language.

We say that the substring y of s

can be **pumped**.

Any regular expression for L must contain a "nontrivial" * (i.e., after weak simplification).

So it is accepted by an FA (and a DFA) with at least one loop.

Any sufficiently long string $s \in L$ must traverse some loop, and so can be decomposed into xyz, where y is nonempty and $xy^i z \in L$ for any $i \in Nat$.

Generalizing the Technique: Pumpable Languages

A language L is **pumpable** iff there is a number p (the pumping length) such that any string $s \in L$ with length $\ge p$ can be expressed as xyz, where:

- 1. |*y*| > 0
- 2. $|xy| \leq p$
- 3. $xy^i z \in L$ for each $i \in Nat$.

Show that these languages are pumpable. What is p in each case?

- Binary strings that are sequences of 10.
- Binary strings containing 101.
- Binary strings with a penultimate 0.
- $\circ~$ Binary strings with even number of 0s or odd number of 1s.
- Decimal strings divisible by 5 (similar for 2)
- Decimal strings divisible by 3.
- Is Oⁿ1ⁿ a pumpable language?

The Pumping Lemma 20-5

Generalizing the Technique: The Pumping Lemma

The Pumping Lemma: L is regular \Rightarrow L is pumpable

This is usually combined with the definition of pumpability:

The Pumping Lemma

If L is a regular language, there is a number p (the pumping length) such that any string $s \in L$ with length $\geq p$ can be expressed as xyz, where:

1. |y| > 0

 $2. |xy| \le p$

3. $xy^i z \in L$ for each $i \in Nat$.

Proof sketch: Let p be the number of states in a DFA for L and q be the first repeated state in the path for s (which must exist by the pigeonhole principle). Use q to divide s into xyz.

The Pumping Lemma 20-6

Generalizing the Technique: Typical Use & Warning

The pumping lemma says:

L is regular \Rightarrow L is pumpable

We usually invoke the pumping lemma via its contrapositive:

L is not pumpable \Rightarrow L is not regular

This is our standard technique for proving languages nonregular.

Warning: the converse of the pumping lemma is not true! L is pumpable ≠ L is regular (Sipser 1.54, PS7 Prob3)

Using the Pumping Lemma to Prove L Nonregular

The pumping lemma says every sufficiently long string in a regular language has a parse that can be pumped and still be in the language.

To prove a language nonregular, we just need to find one counterexample string!

Towards a contradiction, assume L is regular.

By the pumping lemma, there is a p such that all strings $s \in L$ with length $\ge p$ can be pumped.

Find some string $s \in L$ with length $\geq p$ for which pumping is problematic. I.e., every decomposition of s into xyz with |y| > 0 and $|xy| \leq p$ leads to a string $xy'z \notin L$ for some $i \in Nat$.

Therefore, the assumption that L is regular is false. X

Game vs. Demon

Using the pumping lemma to prove a language nonregular can be viewed as a game vs. a demon:

- 1. You: give the demon the language L
- 2. Demon: gives you p
- 3. You: give the demon string $s \in L$ with $|s| \ge p$.
- 4. Demon: divides s into xyz such that |y| > 0 and $|xy| \le p$
- 5. You: give the demon an *i* such that $xy^i z \notin L$.

Notes:

- The demon will make your task as difficult as possible in step #4. He gets to chose the worst possible parse of s into xyz. You do **not** get to choose a parse that happens to be good for you.
- A clever choice of s in step #3 can tie the demon's hands in step #4, and make your life much easier in step #5.

The Pumping Lemma 20-9

$L_1 = \{O^n 1^n \mid n \in Nat\}$ revisited

Viewed as game vs. a demon:

- 1. You: give the demon the language L_1
- 2. Demon: gives you p
- 3. You: give the demon a string $s \in L_1$ with $|s| \ge p$. E.g.:
 - $s_1 = O^{p/2} 1^{p/2}$ (for simplicity, assume p is even)
 - s₂ = 0^p1^p
- 4. Demon: divides s into xyz such that |y| > 0 and $|xy| \le p$.
- 5. You: give the demon an *i* such that $xy^i z \notin L_1$

Moral: Since you get to pick string *s*, choose one that saves you work! The Pumping Lemma 20-10

How to Write a Pumping Lemma Proof

Here's how to write a formal proof that L_1 is not regular.

Towards a contradiction, suppose L_1 were regular.

s must be parsed as $x = 0^a$, $y = 0^b$, $z = 0^c 1^p$, where $a, b, c \in Nat$, a + b + c = p, and b > 0.

But $xy^i z = 0^{a+bi+c} 1^p = 0^{p+b(i-1)} 1^p$, which $\notin L_1$ for any $i \neq 1$. So L_1 cannot be regular.

You should write pumping lemma proofs on PS7 in this format!

$L_2 = \{w \mid w \text{ has equal } \# \text{ of } 0s \text{ and } 1s\}$

- 1. You: give the demon the language L_2
- 2. Demon: gives you p
- 3. You: give the demon a string $s \in L_2$ with $|s| \ge p$. Which ones below work?
 - $s_1 = 0^{p/2} 1^{p/2}$

s₂ = 0^p1^p

- $s_3 = (01)^p$
- 4. Demon: divides s into xyz such that |y| > 0 and $|xy| \le p$
- 5. You: give the demon an *i* such that $xy'z \notin L_2$

Moral: not all strings s work! (But just need one.)

The Pumping Lemma 20-12

L₂: A Simpler Approach using Closure Properties

Suppose L_2 is regular.

Then $L_2 \cap 0^{*1*}$ is regular. Why?

So L_2 can't be regular. Why?

Moral: Closure properties of regular languages are helpful for proving languages nonregular!

The Pumping Lemma 20-13

Intuition: Regular Languages "Can't Count"

Intuitively, the pumping lemma says that regular languages (equivalently, finite automata) can't count arbitrarily high they'll get confused beyond k = the number of states.

This is why L_1 and L_2 aren't regular:

 $\label{eq:L1} \begin{array}{l} L_1 = \{ O^n 1^n \mid n \in Nat \} \\ L_2 = \{ w \mid w \text{ has equal $\#$ of Os and 1s} \} \end{array}$

But be careful! This intuition can sometimes lead you astray! For example, the following languages **are** regular: {w | w in {0,1}* and has equal # of 01s and 10s} (PS4)

 $\{1^{k}y \mid y \text{ in } \{0,1\}^{*} \text{ and } y \text{ contains at least } k \text{ 1s, for } k \ge 1\}$ (PS7)

The Pumping Lemma 20-14

Pumping Down: $L_3 = \{O^i 1^j | i > j\}$

- 1. You: give the demon the language L_3
- 2. Demon: gives you p
- 3. You: give the demon what string $s \in L_3$ with $|s| \ge p$?
- 4. Demon: divides s into xyz such that |y| > 0 and $|xy| \le p$

5. You: give the demon an *i* such that $xy^i z \notin L_3$

Moral: Sometimes i needs to be 0. This is called "pumping down". The Pumping Lemma 20-15

$L_4 = \{ww ~|~ w \in \! \{0,\!1\}^{\!\!*}\}$

- 1. You: give the demon the language L_4
- 2. Demon: gives you p
- 3. You: give the demon what string $s \in L_4$ with $|s| \ge p$?

4. Demon: divides s into xyz such that |y| > 0 and $|xy| \le p$

5. You: give the demon an *i* such that $xy^{i}z \notin L_{4}$.

Moral: Again, choosing s carefully can save you lots of work!

$L_5 = \{1^{n^2} \mid n \ge 0\}$

- 1. You: give the demon the language L_5
- 2. Demon: gives you p
- 3. You: give the demon what string $s \in L_5$ with $|s| \ge p$?
- 4. Demon: divides s into xyz such that |y| > 0 and $|xy| \le p$
- 5. You: give the demon an *i* such that $xy^iz \notin L_5$.

Moral: Arithmetic details matter!