
CS235 Languages and Automata

Department of Computer Science
Wellesley College

The Pumping Lemma

Thursday, October 18, 2012
Reading: Sipser 1.4, Stoughton 3.13

A Technique for Proving
that Languages are Nonregular

The Pumping Lemma 20-2

Nonregular Languages: Overview

1.  Not all languages are regular! As an example, we�ll show the
 language {0n1n | n in Nat} is not regular.

2. Generalize the technique for #1 by developing the pumping lemma.

3. Give examples of using the pumping lemma (sometimes in
 conjunction with closure properties of regular languages) to
 prove-by-contradiction that certain languages aren�t regular.

(01)* 0*1*
00*

0*1*+(01)* Reg

Lan 0n1n

The Pumping Lemma 20-3

0n1n is Not a Regular Language
Proof by Contradiction: Suppose On1n is a regular language.
Then it is accepted by a DFA. Suppose the DFA has k states.

Now consider the labeled path for accepting the string 0k1k:

0 0 0 0 0 0 0 0 0…0 1k

k+1 states

By the pigeonhole principle, 2 of the first k+1 states must be the same:
0 0 0 0 0 0 0 0 0…0 1k

So the path has the form:
0a 0c 1k

0b

where a + b + c = k and b > 0

This means the DFA also accepts strings 0a0ib0c1k for any i ∈ Nat.
But for i ≠ 1, these strings do not have the form 0n1n for some n.
This contradicts the assumption that there is a DFA for 0n1n. X

The Pumping Lemma 20-4

Generalizing the Technique: Intuition
Suppose L is an infinite regular language.

Any regular expression for L must contain a �nontrivial��*
(i.e., after weak simplification).

So it is accepted by an FA (and a DFA) with at least one loop.

Any sufficiently long string s ∈ L must traverse some loop,
and so can be decomposed into xyz, where y is nonempty and
xyiz ∈ L for any i ∈ Nat.

We say that the substring y of s
can be pumped.

x z

y

q

The Pumping Lemma 20-5

Generalizing the Technique: Pumpable Languages
A language L is pumpable iff there is a number p (the pumping length) such
that any string s ∈ L with length ≥ p can be expressed as xyz, where:

1. |y| > 0

2. |xy| ≤ p
3. xyiz ∈ L for each i ∈ Nat.

Show that these languages are pumpable. What is p in each case?
o  Binary strings that are sequences of 10.
o  Binary strings containing 101.
o  Binary strings with a penultimate 0.
o  Binary strings with even number of 0s or odd number of 1s.
o  Decimal strings divisible by 5 (similar for 2)
o  Decimal strings divisible by 3.

Is On1n a pumpable language?
The Pumping Lemma 20-6

Generalizing the Technique: The Pumping Lemma

x z

y

The Pumping Lemma
If L is a regular language, there is a number p (the pumping length)
such that any string s ∈ L with length ≥ p can be expressed as xyz,
where:

1. |y| > 0

2. |xy| ≤ p

3. xyiz ∈ L for each i ∈ Nat.

This is usually combined with the definition of pumpability:

q

The Pumping Lemma: L is regular ⇒ L is pumpable

Proof sketch: Let p be the number of
states in a DFA for L and q be the first
repeated state in the path for s (which
must exist by the pigeonhole principle).
Use q to divide s into xyz.

The Pumping Lemma 20-7

Generalizing the Technique: Typical Use & Warning

The pumping lemma says:

L is regular ⇒ L is pumpable

Warning: the converse of the pumping lemma is not true!

L is pumpable ⇒ L is regular (Sipser 1.54, PS7 Prob3)

We usually invoke the pumping lemma via its contrapositive:

 L is not pumpable ⇒ L is not regular

This is our standard technique for proving languages nonregular.

The Pumping Lemma 20-8

Using the Pumping Lemma to Prove L Nonregular
The pumping lemma says every sufficiently long string in a regular
language has a parse that can be pumped and still be in the language.

To prove a language nonregular, we just need to find
one counterexample string!

Towards a contradiction, assume L is regular.

By the pumping lemma, there is a p such that all strings s ∈ L with
length ≥ p can be pumped.

Find some string s ∈ L with length ≥ p for which pumping is
problematic. I.e., every decomposition of s into xyz with |y| > 0
and |xy| ≤ p leads to a string xyiz ∉ L for some i ∈ Nat.

Therefore, the assumption that L is regular is false. X

The Pumping Lemma 20-9

Game vs. Demon
Using the pumping lemma to prove a language nonregular
can be viewed as a game vs. a demon:

1. You: give the demon the language L

2. Demon: gives you p

3. You: give the demon string s ∈ L with |s| ≥ p.

4. Demon: divides s into xyz such that
 |y| > 0 and |xy| ≤ p

5. You: give the demon an i such that xyiz ∉ L.

Notes:
•  The demon will make your task as difficult as possible

in step #4. He gets to chose the worst possible
parse of s into xyz . You do not get to choose
a parse that happens to be good for you.

•  A clever choice of s in step #3 can tie the
demon�s hands in step #4, and make your
life much easier in step #5. The Pumping Lemma 20-10

L1 = {On1n | n ∈ Nat} revisited

Viewed as game vs. a demon:

1. You: give the demon the language L1

2. Demon: gives you p

3. You: give the demon a string s ∈ L1 with |s| ≥ p. E.g.:

 s1 = 0p/21p/2 (for simplicity, assume p is even)

 s2 = 0p1p

4. Demon: divides s into xyz such that |y| > 0 and |xy| ≤ p.

5. You: give the demon an i such that xyiz ∉ L1

Moral: Since you get to pick string s, choose one that saves you work!

The Pumping Lemma 20-11

How to Write a Pumping Lemma Proof

Towards a contradiction, suppose L1 were regular.

By the pumping lemma for regular languages, there is a pumping
length p such that the string s = 0p1p in L1 would be pumpable ---
i.e., parsable into xyz such that y is nonempty, |xy| ≤ p,
and xyiz ∈ L1 for all i ∈ Nat.

s must be parsed as x = 0a, y = 0b, z = 0c1p, where a,b,c ∈ Nat,
 a + b + c = p, and b > 0.

But xyiz = 0a+bi+c1p = 0p+b(i-1)1p, which ∉ L1 for any i ≠ 1.
So L1 cannot be regular.

Here�s how to write a formal proof that L1 is not regular.

You should write pumping lemma proofs on PS7 in this format!

The Pumping Lemma 20-12

L2 = {w | w has equal # of 0s and 1s}
1. You: give the demon the language L2

2. Demon: gives you p

3. You: give the demon a string s ∈ L2 with |s| ≥ p.
 Which ones below work?

 s1 = 0p/21p/2

 s2 = 0p1p

 s3 = (01)p

4. Demon: divides s into xyz such that |y| > 0 and |xy| ≤ p

5. You: give the demon an i such that xyiz ∉ L2

Moral: not all strings s work! (But just need one.)

The Pumping Lemma 20-13

L2 : A Simpler Approach using Closure Properties

Suppose L2 is regular.

Then L2 ∩ 0*1* is regular. Why?

So L2 can�t be regular. Why?

Moral: Closure properties of regular languages are helpful for
 proving languages nonregular!

The Pumping Lemma 20-14

Intuition: Regular Languages �Can�t Count�
Intuitively, the pumping lemma says that regular languages
(equivalently, finite automata) can�t count arbitrarily high –
they�ll get confused beyond k = the number of states.

This is why L1 and L2 aren�t regular:

L1 = {0n1n | n ∈ Nat}

L2 = {w | w has equal # of 0s and 1s}

But be careful! This intuition can sometimes lead you astray!

For example, the following languages are regular:

{w | w in {0,1}* and has equal # of 01s and 10s} (PS4)

{1ky | y in {0,1}* and y contains at least k 1s, for k ≥ 1} (PS7)

The Pumping Lemma 20-15

Pumping Down: L3 = {0i1j | i > j}
1. You: give the demon the language L3

2. Demon: gives you p

3. You: give the demon what string s ∈ L3 with |s| ≥ p?

4. Demon: divides s into xyz such that |y| > 0 and |xy| ≤ p

5. You: give the demon an i such that xyiz ∉ L3

Moral: Sometimes i needs to be 0. This is called �pumping down�.
The Pumping Lemma 20-16

L4 = {ww | w ∈ {0,1}*}
1. You: give the demon the language L4

2. Demon: gives you p

3. You: give the demon what string s ∈ L4 with |s| ≥ p?

4. Demon: divides s into xyz such that |y| > 0 and |xy| ≤ p

5. You: give the demon an i such that xyiz ∉ L4.

Moral: Again, choosing s carefully can save you lots of work!

The Pumping Lemma 20-17

L5 = {1n2 | n ≥ 0}
1. You: give the demon the language L5

2. Demon: gives you p

3. You: give the demon what string s ∈ L5 with |s| ≥ p?

4. Demon: divides s into xyz such that |y| > 0 and |xy| ≤ p

5. You: give the demon an i such that xyiz ∉ L5.

Moral: Arithmetic details matter!

