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The Pumping Lemma 20-2 

Nonregular Languages: Overview   

1.  Not all languages are regular!  As an example, we�ll show the 
    language {0n1n | n in Nat} is not regular. 
 
 
 
 
 
  
 
2. Generalize the technique for #1 by developing the pumping lemma.  
 
3. Give examples of using the pumping lemma (sometimes in   
    conjunction with closure properties of regular languages) to 
    prove-by-contradiction that certain languages aren�t regular.  
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0n1n is Not a Regular Language   
Proof by Contradiction:  Suppose On1n is a regular language.  
Then it is accepted by a DFA. Suppose the DFA has k states.  

Now consider the labeled path for accepting the string 0k1k: 

0 0 0 0 0 0 0 0 0…0 1k 

k+1 states 

By the pigeonhole principle, 2 of the first k+1 states must be the same: 
0 0 0 0 0 0 0 0 0…0 1k 

So the path has the form:  
0a 0c 1k 

0b 

where a + b + c = k and b > 0 

This means the DFA also accepts strings 0a0ib0c1k for any i ∈ Nat. 
But for i ≠ 1, these strings do not have the form 0n1n for some n. 
This contradicts the assumption that there is a DFA for 0n1n.  X  
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Generalizing the Technique: Intuition 
Suppose L is an infinite regular language. 
 
Any regular expression for L must contain a �nontrivial��* 
(i.e., after weak simplification).   
 
So it is accepted by an FA (and a DFA) with at least one loop.  
 
Any sufficiently long string s ∈ L must traverse some loop,  
and so can be decomposed into xyz, where y is nonempty and 
xyiz ∈ L for any i ∈ Nat.  
 
 
 
 
We say that the substring y of s  
can be pumped.   
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Generalizing the Technique: Pumpable Languages 
A language L is pumpable iff there is a number p (the pumping length) such 
that any string s ∈ L with length ≥ p can be expressed as xyz, where:  

1. |y| > 0 

2. |xy| ≤ p 
3. xyiz ∈ L for each i ∈ Nat.  

Show that these languages are pumpable. What is p in each case?  
o  Binary strings that are sequences of 10.  
o  Binary strings containing 101.  
o  Binary strings with a penultimate 0. 
o  Binary strings with even number of 0s or odd number of 1s. 
o  Decimal strings divisible by 5 (similar for 2)  
o  Decimal strings divisible by 3. 

Is On1n a pumpable language?   
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Generalizing the Technique: The Pumping Lemma   

x z 

y 

The Pumping Lemma 
If L is a regular language, there is a number p (the pumping length) 
such that any string s ∈ L with length ≥ p can be expressed as xyz, 
where:  

1. |y| > 0 

2. |xy| ≤ p 

3. xyiz ∈ L for each i ∈ Nat.    

This is usually combined with the definition of pumpability: 

q 

The Pumping Lemma: L is regular ⇒ L is pumpable 

Proof sketch: Let p be the number of 
states in a DFA for L and q be the first 
repeated state in the path for s (which 
must exist by the pigeonhole principle). 
Use q to divide s into xyz.   
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Generalizing the Technique: Typical Use & Warning 

The pumping lemma says: 

L is regular ⇒ L is pumpable 

Warning: the converse of the pumping lemma is not true! 

L is pumpable ⇒ L is regular (Sipser 1.54, PS7 Prob3) 

We usually invoke the pumping lemma via its contrapositive: 

       L is not pumpable ⇒ L is not regular 

This is our standard technique for proving languages nonregular. 
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Using the Pumping Lemma to Prove L Nonregular 
The pumping lemma says every sufficiently long string in a regular 
language has a parse that can be pumped and still be in the language. 

To prove a language nonregular, we just need to find  
one counterexample string! 

Towards a contradiction, assume L is regular.  

By the pumping lemma, there is a p such that all strings s  ∈ L with 
length ≥ p can be pumped.   

Find some string s ∈ L with length ≥ p for which pumping is  
problematic. I.e., every decomposition of s into xyz with |y| > 0  
and |xy| ≤ p leads to a string xyiz ∉ L for some i ∈ Nat.  

Therefore, the assumption that L is regular is false.  X 
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Game vs. Demon 
Using the pumping lemma to prove a language nonregular 
can be viewed as a game vs. a demon:  

1. You: give the demon the language L 

2. Demon: gives you p 

3. You: give the demon string s ∈ L with |s| ≥ p.  

4. Demon: divides s into xyz such that 
    |y| > 0 and |xy| ≤ p 

5. You: give the demon an i such that xyiz ∉ L. 

Notes:  
•  The demon will make your task as difficult as possible  

in step #4.  He gets to chose the worst possible  
parse of s into xyz .  You do not get to choose  
a parse that  happens to be good for you.  

•  A clever choice of s in step #3 can tie the 
demon�s hands in step #4,  and make your 
life much easier in step #5.  The Pumping Lemma 20-10 

L1 = {On1n | n ∈ Nat} revisited  

Viewed as game vs. a demon:  

1. You: give the demon the language L1 

2. Demon: gives you p 

3. You: give the demon a string s ∈ L1 with |s| ≥ p.  E.g.:  

 s1 = 0p/21p/2  (for simplicity, assume p is even) 

 s2 = 0p1p 

4. Demon: divides s into xyz such that |y| > 0 and |xy| ≤ p.  
 

 

5. You: give the demon an i such that xyiz ∉ L1 

 

Moral: Since you get to pick string s, choose one that saves you work!  
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How to Write a Pumping Lemma Proof 

Towards a contradiction, suppose L1  were regular.  

By the pumping lemma for regular languages, there is a pumping  
length p such that the string s = 0p1p in L1 would be pumpable --- 
i.e., parsable into xyz such that y is nonempty, |xy| ≤ p,  
and xyiz ∈ L1  for all i  ∈ Nat. 

s must be parsed as x = 0a, y = 0b, z = 0c1p, where a,b,c ∈ Nat, 
 a + b + c = p, and b > 0.  

But xyiz = 0a+bi+c1p = 0p+b(i-1)1p, which ∉ L1  for any i ≠ 1.  
So L1  cannot be regular.  

Here�s how to write a formal proof that L1  is not regular.  

You should write pumping lemma proofs on PS7 in this format! 
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L2 = {w | w has equal # of 0s and 1s}  
1. You: give the demon the language L2 

2. Demon: gives you p 

3. You: give the demon a string s ∈ L2 with |s| ≥ p.   
            Which ones below work? 

 s1 = 0p/21p/2 

 s2 = 0p1p   

 s3 =  (01)p 

4. Demon: divides s into xyz such that |y| > 0 and |xy| ≤ p  

 

5. You: give the demon an i such that xyiz ∉ L2 

 

Moral: not all strings s work! (But just need one.)  
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L2 : A Simpler Approach using Closure Properties 

Suppose L2 is regular.  

 

Then L2 ∩  0*1* is regular.  Why?  

 

 

So L2 can�t be regular. Why? 

 

 

 

 

Moral: Closure properties of regular languages are helpful for   
           proving languages nonregular! 
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Intuition: Regular Languages �Can�t Count� 
Intuitively, the pumping lemma says that regular languages  
(equivalently, finite automata) can�t count arbitrarily high – 
they�ll get confused beyond k = the number of states.  

This is why L1  and L2 aren�t regular:  

L1 = {0n1n | n ∈ Nat} 

L2 = {w | w has equal # of 0s and 1s} 

 

But be careful!  This intuition can sometimes lead you astray! 

For example, the following languages are regular: 

{w | w in {0,1}* and has equal # of 01s and 10s}  (PS4)  

{1ky | y in {0,1}* and y contains at least k 1s, for k ≥ 1} (PS7) 
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Pumping Down: L3 = {0i1j | i > j}  
1. You: give the demon the language L3 

2. Demon: gives you p 

3. You: give the demon what string s ∈ L3 with |s| ≥ p?  

 

4. Demon: divides s into xyz such that |y| > 0 and |xy| ≤ p 

  

 

 

 

5. You: give the demon an i such that xyiz ∉ L3 

 

Moral: Sometimes i needs to be 0. This is called �pumping down�.   
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L4 = {ww | w ∈ {0,1}*}  
1. You: give the demon the language L4 

2. Demon: gives you p 

3. You: give the demon what string s ∈ L4 with |s| ≥ p? 

 

 

4. Demon: divides s into xyz such that |y| > 0 and |xy| ≤ p 

 

 

  

5. You: give the demon an i such that xyiz ∉ L4.  
 

Moral:  Again, choosing s carefully can save you lots of work! 
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L5 = {1n2 | n ≥ 0}  
1. You: give the demon the language L5 

2. Demon: gives you p 

3. You: give the demon what string s ∈ L5 with |s| ≥ p?  

 

4. Demon: divides s into xyz such that |y| > 0 and |xy| ≤ p 

 

 

 

5. You: give the demon an i such that xyiz ∉ L5.  
 

 

Moral:  Arithmetic details matter! 


