
CS235 Languages and Automata Handout # 12
Prof. Lyn Turbak October 12, 2012
Wellesley College

Problem Set 6
Due: Thursday, October 18

Reading: Sipser, Sections 1.3; Stoughton, Sections 3.1 – 3.4, 3.11;
(optional) Kozen Ch. 3–9, 11, 13–14

Submission:
You should turn in a hardcopy submission packet by slipping it under Lyn’s office door. This

packet should include: (1) your written solutions for each problem and (2) your final version of
the ps6 directory, including the files ps6.sml, L1R.fa, and L2.dfa. (3) your transcripts of the
requested test cases.

You should also submit a softcopy (consisting of your final ps6 directory) to the drop directory
~cs235/drop/ps6/username, where username is your username. To do this, execute the following
commands in Linux:

cd /students/username/cs235

cp -R ps6 ~cs235/drop/ps6/username/

Note: All programming on this assignment uses the Forlan modules and so must be done in a
version of SML with the Forlan toolset loaded. Additionally, it is assumed that you have loaded
the file ~/cs235/ps6/ps6.sml via use so that you can use the helper functions provided in this
file.

Note: There are a total of 130 points on this assignment. There are also two optional extra credit
problems that are worth a total of 45 points.

Problem 1 [25]: FA Reversal

a [10] Suppose that language L is accepted by the the finite automaton FAL = (QL,ΣL, TL, sL, FL).
Define a finite automaton FAR = (QR,ΣR, TR, sR, FR) that accepts the reversed language LR.
Your definition should be in a form similar to that of the EFA to NFA definition in slide 15-10
and the NFA to DFA definition in slide 15-16. (These are slides from Wed. Oct. 10 Lecture
#15 Transforming Finite Automata: Nondeterministic and Deterministic Finite Automata Are
Equivalent.)

b [5] Using your approach from part b, draw an FA that accepts the reversal of the language
defined by the following FA:

B

Start A

C

001

01

110

100

011

0

10

1

c [10] Use Forlan to test that your FA from part b accepts the reversal of the language of
the pictured FA on all binary strings of up to length 12. The ps6 folder contains a file L1.fa

corresponding to the FA pictured above. For this problem, you should do the following:

1. Define a file L1R.fa for the reversed FA.

2. In the file ps6.sml, define a testing function testL1R of type int -> bool such that
testL1R n compares the FAs in L1.fa and L1R.fa on all binary strings of up to length n .
This function should return true iff L1R.fa accepts only the reversal of all strings accepted
by L1.fa, and otherwise should return false. In the false case, testL1R should also print
a list of each counterexample strings s, indicating whether s is accepted by L1.fa and the
reversal of s is accepted by L1R.fa.

ps6.sml provides the following helper function that you may find useful in this problem:

fun revString s = String.implode (List.rev (String.explode s))

3. Show that testL1R 12 returns true (submit a transcript for this).

Problem 2 [20]: FA to DFA Conversion In this problem, you will convert the following finite
automaton to a DFA using the steps presented in the Lecture #15 slides (handed out Wed. Oct
5).

B C

Start A D

E

ǫ

aa

ǫ
b

ǫ,a

bb

a,b

a

The file L2.fa contains a description of this FA in Forlan syntax.

a [3]: FA to EFA Using the FA to EFA conversion algorithm presented in ths slides, draw an
EFA that is equivalent to the above FA.

b [5]: EFA to NFA Using the EFA to NFA conversion algorithm presented in the slides, draw
an NFA that is equivalent to the EFA from part a.

c [10]: NFA to DFA Using the NFA to DFA conversion algorithm presented in the slides (i.e.,
the subset construction), draw a DFA that is equivalent to the NFA from part b.

d [2]: Testing Using JFA, created a file named L2.dfa that expresses your solution to part c in
Forlan DFA format. Test that this file is correct by running the following testing function, which
is defined in ps6.sml:

fun test2 () =

let val L2_fa = FA.input "L2.fa"

val L2_dfa = DFA.input "L2.dfa"

in DFA.relationship(faToDFA L2_fa, L2_dfa)

end

If L2.dfa is correct, then executing test2() in Forlan will have the following behavior:

2

- test2();

languages are equal

val it = () : unit

But if L2.dfa is incorrect, then executing test2() in Forlan will give counterexamples explaining
why the languages are not equal. These counterexamples will help you debug your DFA.

Notes:

• Although the testing function test2 uses faToDFA, you should not use any of faToEFA, efaToNFA,
nfaToDFA, or faToDFA to construct your automata. Instead, you should construct them by hand.

• In the file L2.dfa, you should write each state as an angle-bracket-delimited comma-separated
sequence of state symbols, which Forlan treats as a single symbol. For example, the state
corresponding to the set {C,E} would be written as the Forlan symbol <C,E>. The current
version of Forlan does not allow braces between the angle brackets.

• In the file L2.dfa, there must be a semicolon between every two transitions but there must
not be a semicolon after the last transition. If you put a semicolon after the last transition,
reading the file will give the error end-of-file unexpected. If you neglect a semicolon after
any transition but the last, reading the file will give the error Q unexpected, where Q is the
first symbol in the next transition.

• The reader for L2.dfa verifies that it is a valid DFA. If you neglect to include a missing edge
from state state with label label , the DFA reader will report the error no transitions for

state/input symbol pair : "state, label".

Problem 3 [40]: Regular Expressions
Consider the following languages over over {a, b, c}∗.

Lab or bc: All strings that contain ab or bc.

Lab and bc: All strings that contain ab and bc.

Lcs at odd positions: All strings in which every odd position (0-indexed) is a c.
(This language contains the empty string.)

Leven as or odd bs: All strings that contain an even number of as or an odd number of bs.

Lgeq 2 bs and leq 1 c: All strings containing at least 2 bs and at most 1 c.

For each language Lname specified above, do the following:

1. In the file ps6.sml, define an SML string named name reg that is a regular expression string
that specifies the language Lname. E.g., the string "a* + (bc)*" specifies a language containing
all strings that are sequences of as or sequences of bcs.

2. In ps6.sml, define an SML predicate named name pred that returns true for every string in
Lname and false for every string not in Lname. Strive to make your predicates as simple and
concise as possible. (Review similar predicates from the solutions to previous assignments!)

3. In ps6.sml, there is a testing function named test name that, given a natural number n, will
generate all strings over {a, b, c} with length ≤ n and for each such string will compare its
membership in the languages defined by the associated regular expression and the predicate.
You should use test name to debug your regular expression until it works correctly on all
strings over {a, b, c}∗ of up to length 8. In your submission you should indicate whether your
regular passes this test; if not, you should include a transcript showing all counterexamples on
which it fails.

3

Notes:

• ps6.sml contains a testing function named test3 all that, given a natural number n, will run
all five testing functions on strings of up to length n.

• Although you will use Forlan to test your regular expressions in this problem, you should not
use Forlan to generate the regular expressions from FAs for the languages. Instead, you should
develop the regular expressions for each language “by hand”.

Problem 4 [20]: Converting a Regular Expression to a Finite Automaton

a [10] Using the rules from Lecture #17 (whose slides will be handed out on Mon. Oct. 15), draw
the finite automaton that can be constructed from the regular expression 1(01* + ($1)*)*1.
Follow the rules carefully; in the past, students have tended to be rather sloppy, leaving out
many states. A correct solution will have lots of states, some of which are unreachable from the
start state.

b [3] Using JFA, created a file named L4a.fa that expresses your solution to part a in Forlan FA
format. Test that this file is correct by running the following testing function, which is defined
in ps6.sml:

fun test4a () =

let val L4a_fa = FA.input "L4a.fa"

val L4a_reg = Reg.fromString "1(01* + ($1)*)*1"

val faToDFA = nfaToDFA o efaToNFA o faToEFA

val regToDFA = faToDFA o regToFA

in DFA.relationship(faToDFA L4a_fa, regToDFA L4a_reg)

end

If L4a.fa is correct, then executing test4a() in Forlan will have the following behavior:

- test4a();

languages are equal

val it = () : unit

But if L4a.fa is incorrect, then executing test4a() in Forlan will give counterexamples explain-
ing why the languages are not equal. These counterexamples will help you debug your FA.

c [5] Use the three simplification rules for finite automata from Lecture #17 (Mon. Oct. 15) to
simplify your finite automaton from part a. Explicitly justify each of your simplification steps
by one of the rules. Do not make any simplifications that aren’t justified by one of the three
simplification rules.

d [2] Using JFA, created a file named L4c.fa that expresses your solution to part c in Forlan FA
format. Similar to part b, test that this file is correct by running the following testing function,
which is defined in ps6.sml:

fun test4c () =

let val L4c_fa = FA.input "L4c.fa"

val L4c_reg = Reg.fromString "1(01* + ($1)*)*1"

val faToDFA = nfaToDFA o efaToNFA o faToEFA

val regToDFA = faToDFA o regToFA

in DFA.relationship(faToDFA L4c_fa, regToDFA L4c_reg)

end

4

Problem 5 [25]: Converting a Finite Automaton to a Regular Expression
Consider the finite automaton FA5 in Fig. ??. Using Sipser’s state-ripping algorithm presented

in the slides for Lecture #17 (Mon. Oct. 15), derive a regular expression R5 that denotes the
language L5 accepted by this finite automaton.

B

Start A C D

11

0

000

00

01

111 10

1

Figure 1: The finite automaton FA5.

Notes:

• At each state-ripping step, you should rip out the state that is the middle state of the fewest
transition pairs. Use this rationale to explicitly justify how you choose the next state to rip.

• To receive full credit, you must show the GNFA that results after each state-ripping step. It’s
also a good idea to explicitly show the work that you do to replace each transition pair by a
single transition.

• You must verify that your answer R5 is correct by defining in ps6.sml a variable R5 string

to be your answer expressed as an SML string and using the testing function provided for this
problem:

fun test5() =

let val L5_fa = FA.input "L5.fa"

val L5_reg = Reg.fromString R5 string

val faToDFA = nfaToDFA o efaToNFA o faToEFA

val regToDFA = faToDFA o regToFA

in DFA.relationship(faToDFA L5_fa, regToDFA L5_reg)

end

Evaluating test5() in Forlan will compare the language denoted by R5String to the language
accepted by the finite automaton for this problem (which has already been specified in the file
L5.fa). If the two are equal, the result is:

- test5();

languages are equal

val it = () : unit

But if the two are different, test5() will give an example of a string in one language that is not
in the other. This will help you debug your regular expression.

5

Extra Credit Problems

Extra Credit 1 [25]: More FA-to-Regular-Expression Conversion
This problem is optional. You should only attempt it after completing the rest of the problems.

Give regular expressions for the following languages:

Lab minus bc: All strings that contain ab but not bc.

Lneither ab nor bc: All strings that contain neither ab nor bc.

You may solve this problem by defining FAs for these languages (see PS5 Problem 1) and then
manually applying the state-ripping algorithm (do not use Forlan for this step). For full credit,
you must (1) show the details of the state-ripping algorithm and (2) use Forlan to verify that your
solution is correct (as in Problem 3 of this problem set).

Extra Credit 2 [20]: Regular Expression Equivalence
Consider the following two regular expressions, as well as the SML functions in Fig. ??.

Ra = 0 + 0(0(0 + 100)* + (0 + 010)*010)

Rb = (0*)*(%* + 0)*(0010*)*0

(* Return a string representation of the result of using the strong simplification

process to simplify the regular expression denoted by the given string. *)

val testSimplify str =

Reg.toString (Reg.simplify Reg.weakSubset (Reg.fromString str))

(* Convert an FA to a DFA *)

val faToDFA = nfaToDFA o efaToNFA o faToEFA

(* Convert a regular expression to a DFA *)

val regToDFA = faToDFA o regToFA

(* Determine the relationship of the languages defined by two regular expressions *)

fun relationshipReg(reg1, reg2) = DFA.relationship(regToDFA reg1, regToDFA reg2)

(* Determine the relationship of the languages defined by two regular expressions,

expressed as strings *)

fun relationshipRegString(regString1, regString2) =

relationshipReg(Reg.fromString regString1, Reg.fromString regString2)

Figure 2: SML functions involving the simplification and comparison of regular expressions.

Using the testSimplify function, we can see that Stoughton’s strong simplifier simplifies Ra to
itself and simplifies Rb to an expression that does not look anything like Ra:

- testSimplify("0 + 0(0(0 + 100)* + (0 + 010)*010)");

val it = "0 + 0(0(0 + 100)* + (0 + 010)*010)" : string

- testSimplify("(0*)*(%* + 0)*(0010*)*0");

val it = "(0 + 001)*0" : string

Nevertheless, we can use the relationshipRegString function to show that Ra and Rb denote the
same regular language:

- relationshipRegString("0 + 0(0(0 + 100)* + (0 + 010)*010)", "(0*)*(%* + 0)*(0010*)*0");

languages are equal

val it = () : unit

6

An alternative way to show that Ra and Rb denote the same regular language is to use the
equivalence rules from Slide 16-14 to algebraically convert Ra to Rb — i.e., to show that there is a
sequence of equivalences

R1 ≈ R2 ≈ · · · ≈ Rn−1 ≈ Rn

where R1 = Ra and Rn = Rb and each ≈ step is justified by a rule from Slide 17-14.
In this problem, follow this alternative approach to show that Ra and Rb are equivalent. Justify

each step of your equivalence by citing the rule used at each step.

Hints:

• It’s a good idea to make (0 + 001)*0 one of your intermediate regular expressions.

• You do not need to use rules 15, 22, or 23.

7

Problem Set Header Page
Please make this the first page of your hardcopy submission.

CS235 Problem Set 6
Due Thursday, October 18, 2012

Name:

Date & Time Submitted:

Collaborators (anyone you worked with on the problem set):

By signing below, I attest that I have followed the collaboration policy specified

in the slides on the first day of class.

Signature:

In the Time column, please estimate the time you spend on the parts of this problem set. Please
try to be as accurate as possible; this information will help me design future problem sets. I will fill
out the Score column when grading your problem set.

Part Time Score

General Reading

Problem 1 [25]

Problem 2 [20]

Problem 3 [40]

Problem 4 [20]

Problem 5 [25]

Extra Credit 1 [25]

Extra Credit 2 [20]

Total

8

