Regular Languages (again!)
Ways of Proving a Language is Regular

- We have learnt many different ways to prove a language is regular
- Can you name some?
Finite Languages

- Are all finite languages regular?
What about Infinite Languages?

- So far, we have seen many regular languages that are infinite
- Examples?
- What do they all have in common?
Exercise

Consider \(L = \{ 0^n 1^n : n \geq 0 \} \).

- Try to design a DFA for it
- What is the difficulty?
Nonregular Languages
Infinite Regular Languages

A regular language is infinite if its corresponding regular expression contains a Kleene star. Kleene stars correspond to loops in finite automata.

\[(a \cup b)^*abba(a \cup b)^*\]

Both Kleene stars and loops give rise to simple repetitive patterns in the language.
The Pigeonhole Principle

- Consider a DFA M with p states for language L
- Any string w accepted by M of length at least p must visit some state more than once
 - Number of states visited is the length of input string + 1
- The pigeonhole principle: *if n pigeons are placed into fewer than n holes, then some hole must have more than one pigeon in it*

Let $w = w_1w_2....w_p \in L$

Only p states: not all of the $p+1$ q_i's can be distinct. Some state must be visited more than once!
Machine Loops

Let q_j be the first repeated state, that is, $q_j = q_{j+k}$ for some k, $1 \leq j < j+k \leq p$.
Pumping Strings

- Let L be a regular language. For any string $w \in L$ that is “sufficiently long” we can split the string into three pieces and pump the middle.
- Let $w = xyz$. Then, for all $i \geq 0$, $xy^iz \in L$, where y^i denotes i copies of y (that is, xz, xyz, $xyyz$, $xxyyz$, $xyyyyz$, etc. must all be in L).
PUMP ALL THE STRINGS!
Pumping Lemma

Theorem. If A is a regular language, then there exists a natural number p (the pumping length) such that all strings $w \in L$ of length at least p can be written as $w=xyz$ such that

1. $|y| > 0$
2. $|xy| \leq p$
3. for each $i \geq 0$, $xy^iz \in L$

Constraint that y must appear among the first p symbols

![Diagram](image)
Pumping Lemma in Action

- Used to prove that a language L is not regular by contradiction
- First assume L is regular
- Pumping lemma guarantees existence of a pumping length p such that all strings of length at least p can be pumped
- Find a string w of length p or more that “cannot be pumped”
 - Show that no matter how you divide w into xyz such that $|y|>0$ and $|xy| \leq p$, there always exists an $i \geq 0$, such that xy^iz is not in L
 - In other words, check all possible ways to split w and reach a contradiction for each
Deciding Regularity: Pumping Lemma

Theorem. The language \(L = \{ 0^n 1^n : n \geq 0 \} \) is not regular.

Proof. Assume \(L \) is regular.

Let \(p \) be the pumping length guaranteed by the pumping lemma.

Let \(w = 0^p 1^p \). Then \(w \in L \) and \(|w| = 2p \geq p \). Consider all possible ways to split \(w \) into \(xyz \) such that \(y \) is non-empty and \(|xy| \) is at most \(p \).

- String \(y \) must only consists of 0s!
Picking the Right Strings

Theorem. The language $C = \{ uu \mid u \in \{0,1\}^* \}$ is not regular.

Proof.
Final Questions

- Do all regular languages satisfy the pumping lemma?
- If a language satisfies the pumping lemma does that mean it is regular?