Turing Machines
Describing Turing Machines

- Formal description

\[M = \text{"On input string } w:\]
1. Sweep across tape, crossing off every other 0.
2. If tape contains one 0, accept.
3. Else, if number of 0’s is odd, reject.
4. Return head to left-hand end of tape.
5. Go to step 1.”

- High-level description
Recursive and Recursively Enumerable Languages

Definition (Turing decidable). A language is *Turing-decidable* if it there is a Turing machine that accepts every string in the language and rejects every string not in the language (thus the machine *always halts*). Turing decidable languages are also referred to as *recursive languages*.

If a Turing machine M halts (accepts or rejects) for every input, we say that M is a *decider*.

Definition (Turing recognizable). A language is *Turing-recognizable* if there is some Turing machine that *accepts* all the strings in the language. Turing recognizable languages are also referred to as *recursively enumerable languages*.
Why Study Turing Machines?

- Turing machines are a terrible model for thinking about *fast* computation.

- We are not interested in finding fast algorithms, but rather in proving that some problems cannot be solved by any computational means.

- To do this, we require a formal definition of “computation” that is simple enough to support formal argument, but still powerful enough to describe *arbitrary algorithms*.
Church-Turing Thesis (1936)

Intuitive Notion of Algorithms = Turing Machine Algorithms
Computability

Hilbert’s Tenth Problem (1900).

Devise an algorithm* that tests whether a given polynomial

\[p(x_1, x_2, \ldots, x_n) \]

has an integral root.

*“find a process according to which it can be determined by a finite number of operations”
Languages and Problems

Definition. Let $D = \{ p \mid p \text{ is a polynomial with an integral root} \}$.

Hilbert’s Tenth Problem.

Determine whether D is Turing-decidable.
Turing Machine (High-level) = Algorithmic Description

A high-level description of a Turing machine is a description of the form

\[M = \text{“On input } x: \text{Do something with } x.” \]

What is allowed? Rule of thumb:

You can include anything in a high-level description, as long as you are convinced that, \textit{if you had to}, you could design a (low-level) Turing machine for it.
Recognizing \(L = \{a^n b^n c^n \mid n \geq 0\} \)

Exercise. Give the high-level description of a Turing machine that recognizes \(L \).

In the following we assume that tape symbols \(x, y, z \notin \Sigma \)

Let \(M = \) “On input string \(w \):

1. Scan the input from left to right to check if it is of the form \(a^*b^*c^* \) and reject if it is not.
2. Return head to left hand end of tape.
3. While there are \(a \)’s remaining on the tape, do:
 - Replace the first \(a \) with an \(x \), scan right until a \(b \) occurs; replace it with \(y \), and scan to the right until a \(c \) occurs; replace it with \(z \). If the corresponding \(b \) and \(c \) for each \(a \) are not found, reject.
4. If there are no \(b \)’s or \(c \)’s remaining on the tape, accept. Otherwise, reject.
Variants of Turing Machine

- Many equivalent ways to define a Turing Machine
 - To show two models are equivalent we need to show we can simulate each by the other

- Invariance to certain changes in model makes the TM a *robust* model

- Today we will discuss the following variants
 - Multitape Turing machines
 - Nondeterministic Turing machine
 - Enumerators
Formally, we need only change the transition function to \(\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R\}^k \).
Multitape TM \iff Single-tape TM

- A multitape TM can always simulate a single-tape TM
- Can a single-tape TM simulate a multitape TM?
Multitape TM ⇔ Single-tape TM

- A multitape TM can always simulate a single-tape TM
- Can a single-tape TM simulate a multitape TM?

Theorem. Every multitape Turing machine has an equivalent single-tape Turing machine.
Nondeterministic TMs: Guess and Check

● One intuition for nondeterminism is perfect guessing.
 ○ The machine has many options, and somehow magically knows which guess to make.

● More formally, a NTM is a TM variant which can take any number of transitions for a given (state, tape symbol) combination \(\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}) \)

● The computation of a NTM is a tree whose branches correspond to different possibilities for the machine. If some branch leads to an accept state, NTM accepts, that is, it accepts \textit{iff there exist some possible series of choices which make it accept.}
Designing NTMs

- When designing NTMs, it is often useful to use the approach of **guess and check**

- Nondeterministically guess some object that can “prove” that $w \in L$.

- Deterministically verify that you have guessed the right object.

- If $w \in L$, there will be some guess that causes the machine to accept.

- If $w \notin L$, then no guess will ever cause the machine to accept.
Theorem. Every nondeterministic TM has an equivalent deterministic TM.
Exercises

- Let a k-PDA be a pushdown automaton that has k stacks.
 - Is a 1-PDA more powerful than a 0-PDA?
 - Is a 2-PDA more powerful than a 1-PDA?
 - Is a 3-PDA more powerful than a 2-PDA?