What Machines Can Do
Definition.

\[A_{\text{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \} \]

\[A_{\text{NFA}} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w \} \]

\[A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates string } w \} \]
Deciding Regular Languages

Theorem. A_{DFA} is decidable.

Proof. M = “On input $<B, w>$,

1. Simulate B on input w.

2. If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject.”
Guessing is No Problem

Theorem. A_{NFA} is decidable.

Proof. $N =$ “On input $< B, w>$,

1. Convert NFA B to an equivalent DFA C.
2. Simulate TM M on input $< C, w>$.
3. If M accepts, accept. Otherwise, reject.”
Theorem. \(A_{\text{REX}} \) is decidable.

Proof. \(P = \) "On input \(\langle R, w \rangle \),

1. Convert RE \(R \) to an equivalent DFA \(C \).

2. Simulate TM \(M \) on input \(\langle C, w \rangle \).

3. If \(M \) accepts, accept. Otherwise, reject."

Deciding Regular Expressions
Emptiness Testing

Definition. \(E_{\text{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \} \)

Is \(E_{\text{DFA}} \) decidable?
Equivalence Testing

Definition. \(EQ_{DFA} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \)

Is \(EQ_{DFA} \) decidable?
1. For the DFA M on the right
 a. Is $<M, 0100> \in A_{DFA}$?
 b. Is $<M, 010> \in A_{DFA}$?
 c. Is $<M> \in A_{DFA}$?
 d. Is $<M, 0100> \in A_{REX}$?
 e. Is $<M> \in E_{DFA}$?
 f. Is $<M, M> \in EQ_{DFA}$?

2. Let $ALL_{DFA} = \{<A> \mid A \text{ is a DFA and } L(A) = \Sigma^* \}$.
 Show that ALL_{DFA} is decidable.
Deciding Context-Free Languages?

Definition. \(A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \} \)
Theorem. \(A_{CFG} \) is decidable.

Proof. \(S = \) “On input \(<G, w> \),

1. Convert \(G \) to an equivalent grammar in Chomsky normal form.

2. List all derivations with \(2n-1 \) steps, where \(n \) is the length of \(w \).

3. If any of these derivations generate \(w \), accept. Otherwise, reject.”
Emptiness Testing

Definition. \(E_{\text{CFG}} = \{ <G> \mid G \text{ is a CFG and } L(G) = \emptyset \} \)

Is \(E_{\text{CFG}} \) decidable?
Equivalence Testing

Definition. \(EQ_{CFG} = \{ <G, H> \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \} \)

Is \(EQ_{CFG} \) decidable?
The Missing Piece

Theorem. Every context-free language is decidable.

Proof. Let G be a CFG for A. We design a TM M_G that decides A as follows.

$M_G = \text{"On input } w.$

1. Run TM S on input $<G, w>$.
2. If this machine accepts, accept. Otherwise, reject."