What Machines Cannot Do
Will This Ever End?

The Universe of Languages

Regular

Context-free

Turing-decidable

\(a^n b^n \)

Turing-recognizable

\(D \)

\(a^n b^n c^n \)

?
The Sizes of Sets

• Comparing the sizes of two finite sets is easy

• Do all infinite sets have the same size? How can we compare the relative sizes of two infinite sets?

<table>
<thead>
<tr>
<th>W</th>
<th>N</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
The Sizes of Sets

- Two sets have the same size if the elements of one set can be paired with the elements of the other set.

- A function that is both one-to-one and onto is called a **correspondence** (bijection). Two sets have the same size if there is a correspondence between them.

<table>
<thead>
<tr>
<th>W</th>
<th>N</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

A set is **countable** if either it is finite or it has the same size as \mathbb{N}.
\mathbb{R} is uncountable (proof by diagonalization)

- We show that no correspondence exists between \mathbb{N} and \mathbb{R}.

- To reach a contradiction, suppose that a correspondence f does exist between \mathbb{N} and \mathbb{R}.

- We will find x in \mathbb{R} that is not paired with anything in \mathbb{N}, which will be our contradiction.

$$
\begin{array}{c|c}
 n & f(n) \\
 \hline
 1 & 3.14159... \\
 2 & 55.55555... \\
 3 & 0.12345... \\
 4 & 0.50000... \\
 5 & 1.414213... \\
 \ldots & \ldots \\
\end{array}
$$
Finite Representation of Languages

• A finite representation of a language must itself be a string over some alphabet Σ. Furthermore, different languages must have distinct representations.

• How many strings can we represent over any given alphabet?
How Many is Many?

Theorem. Let Σ be any finite alphabet containing at least one element. The set of all strings Σ^* over Σ is countably infinite.
How Many Languages?

Definition. Let 2^Σ^*, known as the power set of Σ^*, be the set of all subsets of Σ^*, i.e., the set of all languages over Σ.

Theorem. The set 2^Σ^* is uncountable.

Proof. For each language $A \in 2^\Sigma^*$, create a unique infinite binary sequence.

$$\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots \}$$

$$A = \{ 0, 00, 01, 000, 001, \ldots \}$$

$$f(A) = 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ \ldots$$
How Many Languages?

Definition. Let 2^{Σ^*}, known as the power set of Σ^*, be the set of all subsets of Σ^*, i.e., the set of all languages over Σ.

Theorem. The set 2^{Σ^*} is uncountable.

Proof. For each language $A \in 2^{\Sigma^*}$, create a unique infinite binary sequence.

$$\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots \}$$

$$A = \{ \varepsilon, 0, 01, 10, 001, \ldots \}$$

$$f(A) = 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ \ldots$$
How Many Languages?

Definition. Let $\mathcal{P}(\Sigma^*)$, known as the power set of Σ^*, be the set of all subsets of Σ^*, i.e., the set of all languages over Σ.

Theorem. The set $\mathcal{P}(\Sigma^*)$ is uncountable.

Proof. For each language $A \in \mathcal{P}(\Sigma^*)$, create a unique infinite binary sequence.

$$\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots \}$$

$$A = \{ \varepsilon, 01, 11, 000, 001, \ldots \}$$

$$f(A) = 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ \ldots$$

Thus, we have a correspondence f between $\mathcal{P}(\Sigma^*)$ and infinite binary sequences. Since the set of infinite binary sequences is uncountable (see homework), so is $\mathcal{P}(\Sigma^*)$.
The Sad Conclusion...

The Universe of Languages

- Turing-recognizable
- Turing-decidable
- Context-free
- Regular

$\alpha^n \beta^n \gamma^n$

$a^n b^n$

$a^* b^*$

$S_1 \xrightarrow{1} S_2 \xrightarrow{0} S_1 \xrightarrow{1} S_2$
The Trick is to Get all the Good Ones

Algorithm = Turing Machine
Let's Try This One*

Definition. \(A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \)

* By analogy with our old friends \(A_{DFA} \) and \(A_{CFG} \).
The universal Turing machine.

A$_{TM}$ is Turing-Recognizable

$U = \text{"On input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ a string:}

1. Simulate M on input w.
2. If M ever enters its accept state, accept. If M ever enters its reject state, reject."
We could use \(U \) to decide \(A_{TM} \) if we had some way to determine whether \(M \) would halt on input \(w \).

"On input \(\langle M, w \rangle \), where \(M \) is a TM and \(w \) a string:

1. Determine whether \(M \) on input \(w \) will ever halt. If not, then reject.

2. Otherwise, simulate \(M \) on input \(w \).

3. If \(M \) enters its accept state, accept. If \(M \) enters its reject state, reject."
Some People Don’t Know When to Stop

Theorem. \(A_{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ accepts } w \} \) is undecidable.

Proof. Suppose TM \(H \) decides \(A_{TM} \). That is,

\[
H(<M, w>) = \begin{cases}
\text{accept} & \text{if } M \text{ accepts } w \\
\text{reject} & \text{if } M \text{ does not accept } w
\end{cases}
\]
Calling H as a Subroutine

Define the contrary TM D:

$$D = "On input \langle M \rangle, where M is a TM:"$$

1. Run H on input $\langle M, \langle M \rangle \rangle$.*
2. Output the opposite of what H outputs.

* Think of a Python compiler written in Python.
Calling H as a Subroutine

Define the contrary TM D:

$$D = "\text{On input } <M>, \text{ where } M \text{ is a TM:}\n$$

1. Run H on input $<M, <M>>.*$
2. Output the opposite of what H outputs.

That is,

$$D(<M>) = \begin{cases}
\text{accept} & \text{if } M \text{ does not accept } <M> \\
\text{reject} & \text{if } M \text{ accepts } <M>
\end{cases}$$

* Think of a Python compiler written in Python.
Calling D on Itself

$$D(<D>) = \begin{cases}
accept & \text{if } D \text{ does not accept } <D> \\
reject & \text{if } D \text{ accepts } <D>
\end{cases}$$
Corollary. \(\tilde{A}_{TM} \) is not Turing-recognizable.

Proof. If so, then both \(A_{TM} \) and \(\tilde{A}_{TM} \) would be Turing-recognizable. But, then ...
Out of Bounds

The Universe of Languages

- Turing-decidable
- Context-free
- Regular
- $a^n b^n$
- $a^n b^c^n$
- \tilde{A}_{TM}
- A_{TM}