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What Machines Cannot Do

Sipser:     Section 4.2 pages 201 - 210
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Will This Ever End?
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The Sizes of Sets

• Comparing the sizes of two finite sets is easy

• Do all infinite sets have the same size? How can we 
compare the relative sizes of two infinite sets?

1
2
3
4
5
6
...

2
4
6
8
10
12
...

0
1
2
3
4
5
...

ℕ𝕎 𝔼



Q - 4

The Sizes of Sets

• Two sets have the same size if the elements of one set 
can be paired with the elements of the other set.

• A function that is both one-to-one and onto is called a 
correspondence (bijection). Two sets have the same 
size if there is a correspondence between them.
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A set is countable
if either it is 
finite or it has the 
same size as ℕ.
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• We will find x in ℝ that is not paired with anything in ℕ, 
which will be our contradiction.

• To reach a contradiction, suppose that a correspondence f
does exist between ℕ and ℝ. 

ℝ is uncountable 
(proof by diagonalization)
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• We show that no correspondence exists between ℕ and ℝ. 
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Finite Representation of 
Languages

• A finite representation of a language must itself be a string 
over some alphabet Σ. Furthermore, different languages must 
have distinct representations.

• How many strings can we represent over any given alphabet?
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How Many is Many?

Theorem. Let Σ be any finite alphabet containing at least one 
element. The set of all strings Σ* over Σ is countably
infinite.
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How Many Languages?

Definition. Let 2Σ*, known as the power set of Σ*, be the set of 
all subsets of Σ*, i.e., the set of all languages over Σ.

Proof. For each language A ∈ 2Σ*, create a unique infinite 
binary sequence.

Theorem. The set 2Σ* is uncountable.

Σ* = { }001, …11, 000,01, 10,1, 00,ℇ, 0,

A = { }001, …000,01,00,0,

f(A) = 1 …0 11 00 10 1
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How Many Languages?

Definition. Let 2Σ*, known as the power set of Σ*, be the set of 
all subsets of Σ*, i.e., the set of all languages over Σ.

Proof. For each language A ∈ 2Σ*, create a unique infinite 
binary sequence.

Theorem. The set 2Σ* is uncountable.

Σ* = { }001, …11, 000,01, 10,1, 00,ℇ, 0,

A = { }001, …01, 10,ℇ, 0,

f(A) = 1 …0 01 10 01 1
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How Many Languages?

Definition. Let 2Σ*, known as the power set of Σ*, be the set of 
all subsets of Σ*, i.e., the set of all languages over Σ.

Proof. For each language A ∈ 2Σ*, create a unique infinite 
binary sequence.

Theorem. The set 2Σ* is uncountable.

Thus, we have a correspondence f between 2Σ* and 
infinite binary sequences. Since the set of infinite binary 
sequences is uncountable (see homework), so is 2Σ*. 

Σ* = { }001, …11, 000,01, 10,1, 00,ℇ, 0,

A = { }001, …11, 000,01,ℇ,

f(A) = 1 …1 11 00 01 0
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The Sad Conclusion…
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The Trick is to Get all the Good 
Ones

Algorithm Turing Machine=
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Let’s Try This One*

Definition. ATM = { <M, w> | M is a TM and M accepts w }

* By analogy with our old friends ADFA and ACFG.
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ATM is Turing-Recognizable

U = “On input <M, w>, where M is a TM and w a string:

1.  Simulate M on input w.

2.  If M ever enters its accept state, accept. If M ever 
enters its reject state, reject.”

The universal Turing machine.
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The Halting Problem

“On input <M, w>, where M is a TM and w a string:

2.  Otherwise, simulate M on input w.

3.  If M enters its accept state, accept. If M enters its 
reject state, reject.”

We could use U to decide ATM if we had some way to 
determine whether M would halt on input w.

1.  Determine whether M on input w will ever halt. If 
not, then reject.
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Some People Don’t Know When to 
Stop

Theorem. ATM = { <M, w> | M is a TM and M accepts w } is 
undecidable.

Proof. Suppose TM H decides ATM. That is,

H(<M, w>) = 
accept

reject
if M accepts w
if M does not accept w
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Calling H as a Subroutine

Define the contrary TM D:

D = “On input <M>, where M is a TM:

1.  Run H on input <M, <M>>.*

2.  Output the opposite of what H outputs.

* Think of a Python compiler written in Python.
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Calling H as a Subroutine

Define the contrary TM D:

D = “On input <M>, where M is a TM:

1.  Run H on input <M, <M>>.*

2.  Output the opposite of what H outputs.

* Think of a Python compiler written in Python.

That is,

D(<M>) = 
accept

reject
if M does not accept <M>

if M accepts <M>
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Calling D on Itself

D(<D>) = 
accept

reject
if D does not accept <D>

if D accepts <D>
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ĀTM is not even Turing-
recognizable

Corollary. ĀTM is not Turing-recognizable.

Proof. If so, then both ATM and ĀTM would be Turing-
recognizable. But, then …
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Out of Bounds
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