

What Machines Cannot Do

Sipser: Section 4.2 pages 201 - 210

Will This Ever End?

The Sizes of Sets

- Comparing the sizes of two finite sets is easy
- Do all infinite sets have the same size? How can we compare the relative sizes of two infinite sets?

The Sizes of Sets

- Two sets have the same size if the elements of one set can be paired with the elements of the other set.
- A function that is both one-to-one and onto is called a **correspondence** (bijection). Two sets have the same size if there is a correspondence between them.

A set is **countable** if either it is finite or it has the same size as ℕ.

ℝ is uncountable (proof by diagonalization)

- We show that no correspondence exists between N and R.
- To reach a contradiction, suppose that a correspondence f does exist between ℕ and ℝ.
- We will find x in \R that is not paired with anything in \R , which will be our contradiction.

Finite Representation of Languages

• A finite representation of a language must itself be a string over some alphabet Σ. Furthermore, different languages must have distinct representations.

• How many strings can we represent over any given alphabet?

How Many is Many?

Theorem. Let Σ be any finite alphabet containing at least one element. The set of all strings Σ^* over Σ is countably infinite.

How Many Languages?

Definition. Let $2^{\sum x}$, known as the power set of Σ^* , be the set of all subsets of Σ^* , i.e., the set of all languages over Σ .

Theorem. The set $2^{\sum x}$ is uncountable.

Proof. For each language $A \in 2^{\Sigma^*}$, create a unique infinite binary sequence.

$$
\Sigma^{\star} = \{ \begin{array}{cccccc} \varepsilon, & 0, & 1, & 00, & 01, & 10, & 11, & 000, & 001, & \dots \end{array} \}
$$
\n
$$
A = \{ \begin{array}{cccccc} 0, & 00, & 01, & 10, & 11, & 000, & 001, & \dots \end{array} \}
$$
\n
$$
A(A) = \begin{array}{cccccc} 0, & 0, & 0, & 01, & 0 & 0 & 0 & 1 & 1 & \dots \end{array}
$$

How Many Languages?

Definition. Let $2^{\sum x}$, known as the power set of Σ^* , be the set of all subsets of Σ^* , i.e., the set of all languages over Σ .

Theorem. The set $2^{\sum x}$ is uncountable.

Proof. For each language $A \in 2^{\Sigma^*}$, create a unique infinite binary sequence.

$$
\Sigma^{\star} = \{ \begin{array}{cccccc} \varepsilon, & 0, & 1, & 00, & 01, & 10, & 11, & 000, & 001, & \dots \end{array} \}
$$
\n
$$
A = \{ \begin{array}{cccccc} \varepsilon, & 0, & & 01, & 10, & & 001, & \dots \end{array} \}
$$
\n
$$
A(A) = \begin{array}{cccccc} 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & \dots \end{array}
$$

How Many Languages?

Definition. Let $2^{\sum x}$, known as the power set of Σ^* , be the set of all subsets of Σ^* , i.e., the set of all languages over Σ .

Theorem. The set $2^{\sum x}$ is uncountable.

Proof. For each language $A \in 2^{\Sigma^*}$, create a unique infinite binary sequence.

> $\Sigma^* = \{ \varepsilon, \quad 0, \quad 1, \quad 00, \quad 01, \quad 10, \quad 11, \quad 000, \quad 001, \quad \dots \}$ $A = \{ \varepsilon, 01, 11, 000, 001, ... \}$ $f(A) = 1 0 0 0 1 0 1 1 1$

Thus, we have a correspondence f between $2^{\sum x}$ and infinite binary sequences. Since the set of infinite binary sequences is uncountable (see homework), so is $2^{\sum x}$.

The Trick is to Get all the Good Ones

Algorithm **=** *Turing Machine*

Definition. $A_{TM} = \{ \langle M, w \mid M \text{ is a TM and } M \text{ accepts } w \}$

* By analogy with our old friends A_{DFA} and A_{CFG} .

A_{TM} is Turing-Recognizable

 $U = "On input < M, w$, where M is a TM and w a string:

1. Simulate M on input w.

2. If M ever enters its accept state, accept. If M ever enters its reject state, reject."

The Halting Problem

We could use U to decide A_{TM} if we had some way to determine whether M would halt on input w.

"On input $\langle M, w \rangle$, where M is a TM and w a string:

Determine whether M on input w will ever halt. If not, then reject.

2. Otherwise, simulate M on input w.

3. If M enters its accept state, accept. If M enters its reject state, reject."

Some People Don't Know When to Stop

Theorem. $A_{TM} = \{ \langle M, w \mid M \text{ is a TM and } M \text{ accepts } w \} \text{ is }$ undecidable.

Proof. Suppose TM *H* decides A_{TM} . That is,

$$
H(M, w) = \begin{cases} accept & \text{if } M accepts w \\ reject & \text{if } M does not accept w \end{cases}
$$

Calling Has a Subroutine

Define the contrary TM D:

 $D = "On input < M>$, where *M* is a TM:

- 1. Run H on input < M, < M>.*
- **2.** Output the opposite of what H outputs.

* Think of a Python compiler written in Python.

Calling Has a Subroutine

Define the contrary TM D:

 $D = "On input < M>$, where M is a TM:

- **1.** Run H on input $\langle M, \langle M \rangle \rangle$.*
- **2.** Output the opposite of what H outputs.

That is,

 $D(\langle M\rangle)$ = accept reject if M does not accept <M> if M accepts <M>

* Think of a Python compiler written in Python.

Calling D on Itself

$$
D(2D) =
$$
 $\begin{cases} accept & \text{if } D \text{ does not accept } 2D \\ reject & \text{if } D \text{ accepts } 2D \end{cases}$

 $\bar{\mathcal{A}}_{\mathsf{T} \mathsf{M}}$ is not even Turingrecognizable

- **Corollary.** \overline{A}_{TM} is not Turing-recognizable.
- **Proof.** If so, then both A_{TM} and \overline{A}_{TM} would be Turingrecognizable. But, then …

Out of Bounds

