

What Machines Cannot Do

Sipser: Section 4.2 pages 201 - 210

Will This Ever End?

The Sizes of Sets

- Comparing the sizes of two finite sets is easy
- Do all infinite sets have the same size? How can we compare the relative sizes of two infinite sets?

W	\mathbb{N}	E
0	1	2 4
1	2	
2	2 3 4	6
3	4	8
2 3 4 5	5 6	10
5	6	12
•••	•••	•••

The Sizes of Sets

- Two sets have the same size if the elements of one set can be paired with the elements of the other set.
- A function that is both one-to-one and onto is called a *correspondence* (bijection). Two sets have the same size if there is a correspondence between them.

W	\mathbb{N}	E
0	1	2
1	2	2 4 6
2	2 3 4 5 6	6
3	4	8
2 3 4 5	5	10
5	6	12
•••	•••	•••

A set is countable if either it is finite or it has the same size as \mathbb{N} .

\mathbb{R} is uncountable (proof by diagonalization)

- We show that no correspondence exists between \mathbb{N} and \mathbb{R} .
- To reach a contradiction, suppose that a correspondence f does exist between \mathbb{N} and \mathbb{R} .
- We will find x in \mathbb{R} that is not paired with anything in \mathbb{N} , which will be our contradiction.

n	<i>f</i> (<i>n</i>)
1	3 <u>.1</u> 4159
2	55.5 <u>5</u> 555
3	0.12 <u>3</u> 45
4	0.500 <u>0</u> 0
5	1.4142 <u>13</u>
•••	

Finite Representation of Languages

• A finite representation of a language <u>must itself be a string</u> over some alphabet Σ . Furthermore, <u>different</u> languages must have distinct representations.

• How many strings can we represent over any given alphabet?

How Many is Many?

Theorem. Let Σ be any finite alphabet containing at least one element. The set of all strings Σ^* over Σ is countably infinite.

How Many Languages?

Definition. Let 2^{Σ^*} , known as the power set of Σ^* , be the set of all subsets of Σ^* , i.e., the set of all languages over Σ .

Theorem. The set 2^{Σ^*} is uncountable.

Proof. For each language $A \in 2^{\Sigma^*}$, create a unique infinite binary sequence.

$$\Sigma^{\star} = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \dots \}$$

$$A = \{ 0, 00, 01, 000, 001, \dots \}$$

$$f(A) = 0 1 0 1 1 1 0 0 1 1 \dots$$

How Many Languages?

Definition. Let 2^{Σ^*} , known as the power set of Σ^* , be the set of all subsets of Σ^* , i.e., the set of all languages over Σ .

Theorem. The set 2^{Σ^*} is uncountable.

Proof. For each language $A \in 2^{\Sigma^*}$, create a unique infinite binary sequence.

$$\Sigma^{\star} = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \dots \}$$

$$A = \{ \varepsilon, 0, 01, 10, 001, 001, \dots \}$$

$$f(A) = 1 1 0 0 1 1 0 0 1 \dots$$

How Many Languages?

Definition. Let 2^{Σ^*} , known as the power set of Σ^* , be the set of all subsets of Σ^* , i.e., the set of all languages over Σ .

Theorem. The set 2^{Σ^*} is uncountable.

Proof. For each language $A \in 2^{\Sigma^*}$, create a unique infinite binary sequence.

 $\Sigma^{\star} = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \dots \}$ $A = \{ \varepsilon, 01, 11, 000, 001, \dots \}$ $f(A) = 1 0 0 0 1 1 0 1 1 1 \dots$

Thus, we have a correspondence f between 2^{Σ^*} and infinite binary sequences. Since the set of infinite binary sequences is uncountable (see homework), so is 2^{Σ^*} .

The Trick is to Get all the Good Ones

Algorithm

=

Turing Machine

Definition. $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

* By analogy with our old friends A_{DFA} and A_{CFG} .

A_{TM} is Turing-Recognizable

U = "On input <M, w, where M is a TM and w a string:

1. Simulate *M* on input *w*.

2. If *M* ever enters its accept state, *accept*. If *M* ever enters its reject state, *reject*."

The Halting Problem

We could use U to decide A_{TM} if we had some way to determine whether M would halt on input w.

"On input $\langle M, w \rangle$, where M is a TM and w a string:

1. Determine whether *M* on input *w* will ever halt. If not, then *reject*.

2. Otherwise, simulate *M* on input *w*.

3. If *M* enters its accept state, *accept*. If *M* enters its reject state, *reject*."

Some People Don't Know When to Stop

Theorem. $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \text{ is undecidable.}$

Proof. Suppose TM H decides A_{TM} . That is,

$$H(\langle M, w \rangle) = - \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

Calling Has a Subroutine

Define the contrary TM D:

D = "On input <M>, where M is a TM:

- 1. Run H on input < M, < M>>.*
- 2. Output the opposite of what Houtputs.

* Think of a Python compiler written in Python.

Calling Has a Subroutine

Define the contrary TM D:

D = "On input < M>, where M is a TM:

- 1. Run *H* on input *<M*, *<M*>>.*
- 2. Output the opposite of what Houtputs.

That is,

 $D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$

* Think of a Python compiler written in Python.

Calling D on Itself

$$D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not } accept \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$$

\bar{A}_{TM} is not even Turing-recognizable

- **Corollary**. \bar{A}_{TM} is not Turing-recognizable.
- **Proof.** If so, then both A_{TM} and \overline{A}_{TM} would be Turing-recognizable. But, then ...

Out of Bounds

