
Q - 1

What Machines Cannot Do

Sipser: Section 4.2 pages 201 - 210

Q - 2

Will This Ever End?

Regular

Context-free

The Universe of Languages

a*b*

anbn

anbncn
Turing-decidable

Turing-recognizable
D

?

Q - 3

The Sizes of Sets

• Comparing the sizes of two finite sets is easy

• Do all infinite sets have the same size? How can we
compare the relative sizes of two infinite sets?

1
2
3
4
5
6
...

2
4
6
8
10
12
...

0
1
2
3
4
5
...

ℕ𝕎 𝔼

Q - 4

The Sizes of Sets

• Two sets have the same size if the elements of one set
can be paired with the elements of the other set.

• A function that is both one-to-one and onto is called a
correspondence (bijection). Two sets have the same
size if there is a correspondence between them.

1
2
3
4
5
6
...

2
4
6
8
10
12
...

0
1
2
3
4
5
...

ℕ𝕎 𝔼

A set is countable
if either it is
finite or it has the
same size as ℕ.

Q - 5

• We will find x in ℝ that is not paired with anything in ℕ,
which will be our contradiction.

• To reach a contradiction, suppose that a correspondence f
does exist between ℕ and ℝ.

ℝ is uncountable
(proof by diagonalization)

3.14159…
55.55555…

0.12345…
0.50000…
1.414213…

...

1
2
3
4
5
...

f(n)n

• We show that no correspondence exists between ℕ and ℝ.

Q - 6

Finite Representation of
Languages

• A finite representation of a language must itself be a string
over some alphabet Σ. Furthermore, different languages must
have distinct representations.

• How many strings can we represent over any given alphabet?

Q - 7

How Many is Many?

Theorem. Let Σ be any finite alphabet containing at least one
element. The set of all strings Σ* over Σ is countably
infinite.

Q - 8

How Many Languages?

Definition. Let 2Σ*, known as the power set of Σ*, be the set of
all subsets of Σ*, i.e., the set of all languages over Σ.

Proof. For each language A ∈ 2Σ*, create a unique infinite
binary sequence.

Theorem. The set 2Σ* is uncountable.

Σ* = { }001, …11, 000,01, 10,1, 00,ℇ, 0,

A = { }001, …000,01,00,0,

f(A) = 1 …0 11 00 10 1

Q - 9

How Many Languages?

Definition. Let 2Σ*, known as the power set of Σ*, be the set of
all subsets of Σ*, i.e., the set of all languages over Σ.

Proof. For each language A ∈ 2Σ*, create a unique infinite
binary sequence.

Theorem. The set 2Σ* is uncountable.

Σ* = { }001, …11, 000,01, 10,1, 00,ℇ, 0,

A = { }001, …01, 10,ℇ, 0,

f(A) = 1 …0 01 10 01 1

Q - 10

How Many Languages?

Definition. Let 2Σ*, known as the power set of Σ*, be the set of
all subsets of Σ*, i.e., the set of all languages over Σ.

Proof. For each language A ∈ 2Σ*, create a unique infinite
binary sequence.

Theorem. The set 2Σ* is uncountable.

Thus, we have a correspondence f between 2Σ* and
infinite binary sequences. Since the set of infinite binary
sequences is uncountable (see homework), so is 2Σ*.

Σ* = { }001, …11, 000,01, 10,1, 00,ℇ, 0,

A = { }001, …11, 000,01,ℇ,

f(A) = 1 …1 11 00 01 0

Q - 11

The Sad Conclusion…

Regular

Context-free

The Universe of Languages

a*b*

anbn

anbncn
Turing-decidable

Turing-recognizable
D

Q - 12

The Trick is to Get all the Good
Ones

Algorithm Turing Machine=

Q - 13

Let’s Try This One*

Definition. ATM = { <M, w> | M is a TM and M accepts w }

* By analogy with our old friends ADFA and ACFG.

Q - 14

ATM is Turing-Recognizable

U = “On input <M, w>, where M is a TM and w a string:

1. Simulate M on input w.

2. If M ever enters its accept state, accept. If M ever
enters its reject state, reject.”

The universal Turing machine.

Q - 15

The Halting Problem

“On input <M, w>, where M is a TM and w a string:

2. Otherwise, simulate M on input w.

3. If M enters its accept state, accept. If M enters its
reject state, reject.”

We could use U to decide ATM if we had some way to
determine whether M would halt on input w.

1. Determine whether M on input w will ever halt. If
not, then reject.

Q - 16

Some People Don’t Know When to
Stop

Theorem. ATM = { <M, w> | M is a TM and M accepts w } is
undecidable.

Proof. Suppose TM H decides ATM. That is,

H(<M, w>) =
accept

reject
if M accepts w
if M does not accept w

Q - 17

Calling H as a Subroutine

Define the contrary TM D:

D = “On input <M>, where M is a TM:

1. Run H on input <M, <M>>.*

2. Output the opposite of what H outputs.

* Think of a Python compiler written in Python.

Q - 18

Calling H as a Subroutine

Define the contrary TM D:

D = “On input <M>, where M is a TM:

1. Run H on input <M, <M>>.*

2. Output the opposite of what H outputs.

* Think of a Python compiler written in Python.

That is,

D(<M>) =
accept

reject
if M does not accept <M>

if M accepts <M>

Q - 19

Calling D on Itself

D(<D>) =
accept

reject
if D does not accept <D>

if D accepts <D>

Q - 20

ĀTM is not even Turing-
recognizable

Corollary. ĀTM is not Turing-recognizable.

Proof. If so, then both ATM and ĀTM would be Turing-
recognizable. But, then …

Q - 21

Out of Bounds

Regular

Context-free

The Universe of Languages

a*b*

anbn

anbncn
Turing-decidable

Turing-recognizable
ATM

ĀTM

