Undecidability
Last Lecture We Saw

- There are languages that are not Turing-recognizable
 - There are more languages than there are Turing machines
 - Therefore, there must be a language that is not Turing-recognizable
 - We do not have yet an example of such language
Last Lecture We Saw

- There are languages that are not Turing-recognizable
 - There are more languages than there are Turing machines
 - Therefore, there must be a language that is not Turing-recognizable
 - We do not have yet an example of such language

- What about not Turing-decidable languages?
Towards a Language that is not Turing-Decidable

Definition. \(A_{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ accepts } w \} \).
Towards a Language that is not Turing-Decidable

Definition. \(A_{TM} = \{ <M, w> | M \text{ is a TM and } M \text{ accepts } w \} \).

Question 1. Is \(A_{TM} \) Turing recognizable?
A_{TM} is Turing-Recognizable

$U =$ “On input $<M, w>$, where M is a TM and w a string:

1. Simulate M on input w.
2. If M ever enters its accept state, accept.
3. If M ever enters its reject state, reject.”
\[A_{TM} \] is Turing-Recognizable

\[U = \text{“On input } <M, w>, \text{ where } M \text{ is a TM and } w \text{ a string:}
\]
1. Simulate \(M \) on input \(w \).
2. If \(M \) ever enters its accept state, accept.
3. If \(M \) ever enters its reject state, reject.”

\textbf{Universal Turing Machine} receives other turing machines as input and simulates them.
Towards a Language that is not Turing-Decidable

Definition. $A_{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ accepts } w \}.$

Question 1. Is A_{TM} Turing recognizable? **Yes!**
Towards a Language that is not Turing-Decidable

Definition. $A_{\text{TM}} = \{ <M, w> | M \text{ is a TM and } M \text{ accepts } w \}$.

Question 1. Is A_{TM} Turing recognizable? **Yes!**

Question 2. Is A_{TM} decidable?
Towards a Language that is not Turing-Decidable

Definition. $A_{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ accepts } w \}$.

Question 1. Is A_{TM} Turing recognizable? **Yes!**

Question 2. Is A_{TM} decidable? **No! Proof by contradiction.**
A_{TM} is not Turing-Decidable

Theorem. $A_{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable.

Proof.
A_{TM} is not Turing-Decidable

Theorem. $A_{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable.

Proof. Suppose there is Turing Machine H that decides A_{TM}. That is,
A_{TM} is not Turing-Decidable

Theorem. \(A_{TM} = \{ <M, w> | M \text{ is a TM and } M \text{ accepts } w \} \) is undecidable.

Proof. Suppose there is Turing Machine \(H \) that decides \(A_{TM} \). That is,

\[
H(<M, w>) =
\begin{cases}
 \text{Accept} & \text{if } M \text{ accepts } w \\
 \text{Reject} & \text{if } M \text{ does not accept } w
\end{cases}
\]
Calling H as a Subroutine

Define a Turing Machine D:

\[D = \text{“On input } <M>, \text{ where } M \text{ is a TM:} \]
\[1. \text{ Run } H \text{ on input } <M, <M>>. \]
\[2. \text{ Output the opposite of what } H \text{ outputs.} \]
Calling H as a Subroutine

Define a Turing Machine D:

$D =$ “On input $<M>$, where M is a TM:
1. Run H on input $<M, <M>>$.
2. Output the opposite of what H outputs.

Does M accept on input $<M>$?
Calling H as a Subroutine

Define a Turing Machine D:

\[D = \text{"On input } <M>\text{, where } M \text{ is a TM:} \]

1. Run H on input $<M, <M>>$.
2. Output the opposite of what H outputs.

That is,

\[
D(<M>) = \begin{cases}
\text{Accept} & \text{if } H(<M, <M>>) \text{ rejects} \\
\text{Reject} & \text{if } H(<M, <M>>) \text{ accepts}
\end{cases}
\]
Calling H as a Subroutine

Define a Turing Machine D:

$D = \text{"On input } <M>\text{, where } M \text{ is a TM:}\$

1. Run H on input $<M, <M>>$.
2. Output the opposite of what H outputs.

That is,

$$D(<M>) = \begin{cases}
\text{Accept} & \text{if } H(<M, <M>>) \text{ rejects} \\
\text{Reject} & \text{if } H(<M, <M>>) \text{ accepts}
\end{cases}$$

Remember that, by assumption, H decides A_{TM}.
Calling H as a Subroutine

Define a Turing Machine D:

\[D = \text{"On input } <M>, \text{ where } M \text{ is a TM:} \]

1. Run H on input $<M, <M>>$.
2. Output the opposite of what H outputs.

That is,

\[D(<M>) = \begin{cases}
 \text{Accept} & \text{if } M \text{ does not accept } <M> \\
 \text{Reject} & \text{if } H(<M, <M>>) \text{ accepts}
\end{cases} \]

Remember that, by assumption, H decides A_{TM}.
Calling H as a Subroutine

Define a Turing Machine D:

$$D = \text{"On input } <M>, \text{ where } M \text{ is a TM:}\n$$

1. Run H on input $<M, <M>>$.
2. Output the opposite of what H outputs.

That is,

$$D(<M>) = \begin{cases}
 \text{Accept} & \text{if } M \text{ does not accept } <M> \\
 \text{Reject} & \text{if } M \text{ accepts } <M>
\end{cases}$$
The Diagonalization Trick

<table>
<thead>
<tr>
<th></th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

Entry i, j is the value of H on input $\langle M_i, \langle M_j \rangle \rangle$
The Diagonalization Trick

<table>
<thead>
<tr>
<th></th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Entry i, j is the value of H on input $\langle M_i, \langle M_j \rangle \rangle$
Calling D on Itself

\[
D(<D>) = \begin{cases}
 \text{Accept} & \text{if } D \text{ does not accept } <D> \\
 \text{Reject} & \text{if } D \text{ accepts } <D>
\end{cases}
\]
The Diagonalization Trick

<table>
<thead>
<tr>
<th></th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>\cdots</th>
<th>$\langle D \rangle$</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td></td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td></td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td></td>
<td>reject</td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td></td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ddots</td>
<td>\ddots</td>
<td>\ddots</td>
</tr>
<tr>
<td>D</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td></td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ddots</td>
<td>\ddots</td>
<td>\ddots</td>
</tr>
</tbody>
</table>
The Diagonalization Trick

<table>
<thead>
<tr>
<th></th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>$\langle D \rangle$</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>\cdots</td>
</tr>
<tr>
<td>M_2</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>\cdots</td>
<td>accept</td>
</tr>
<tr>
<td>M_3</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>\cdots</td>
</tr>
<tr>
<td>M_4</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>$_________$</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
</tr>
</tbody>
</table>

D must accepts when it rejects, and vice-versa. Contradiction!
A_{TM} is not Turing-Decidable

Theorem. $A_{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable.

Proof.

- We assumed there was a Turing Machine H that decides A_{TM}.
- Created a Turing Machine D that uses H.
- Reached a contradiction.
- We can conclude Turing Machine H cannot exists.
- Therefore, A_{TM} is undecidable.
Completing the Picture

All Languages

Recursively-Enumerable Languages
Recognized by Turing Machines

Decidable Languages
Decidable by Turing Machine
$0^n1^n2^n$, ww

Context-free Languages
Push-down Automaton
0^n1^n, ww^R

Regular Languages
Finite Automaton
1^*0^*, $(0 \cup 1)^*0$