Undecidability

Last Lecture We Saw

- There are languages that are not Turing-recognizable
 - Therefore, there are more languages than there are Turing machines
 - Therefore, there must be a language that is not Turing-recognizable
 - We do not have yet an example of such language

- What about not Turing-decidable languages?

Towards a Language that is not Turing-Decidable

Definition. $A_T = \{ <M, w> | M \text{ is a TM and } M \text{ accepts } w \}$
Towards a Language that is not Turing-Decidable

Definition. $A_{TM} = \{ <M, w> | M \text{ is a TM and } M \text{ accepts } w \}$.

Question 1. Is A_{TM} Turing recognizable?

No!

A_{TM} is Turing-Decidable

$U = \{ <M, w> | M \text{ is a TM and } M \text{ accepts } w \}$.

Question 1. Is A_{TM} Turing recognizable? Yes!

Universal Turing Machine receives other turing machines as input and simulates them.
Towards a Language that is not Turing-Decidable

Definition. $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$.

Question 1. Is A_{TM} Turing recognizable? Yes!

Question 2. Is A_{TM} decidable?

No! Proof by contradiction.

A_{TM} is not Turing-Decidable

Theorem. $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable.

Proof. Suppose there is Turing Machine H that decides A_{TM}. That is,
\(A^{TM}_{TM} \) is not Turing-Decidable

Theorem. \(A^{TM}_{TM} = \{ <M, w> | M \text{ is a TM and } M \text{ accepts } w \} \) is undecidable.

Proof. Suppose there is Turing Machine \(H \) that decides \(A^{TM}_{TM} \). That is,

\[
H(<M, w>) =
\begin{cases}
 \text{Accept} & \text{if } M \text{ accepts } w \\
 \text{Reject} & \text{if } M \text{ does not accept } w
\end{cases}
\]

Calling H as a Subroutine

Define a Turing Machine \(D \):

\(D = \text{"On input } <M>, \text{ where } M \text{ is a TM:} \)

1. Run \(H \) on input \(<M, <M>> \).
2. Output the opposite of what \(H \) outputs.

That is,

\[
D(<M>) =
\begin{cases}
 \text{Accept} & \text{if } H(<M, <M>>) \text{ rejects} \\
 \text{Reject} & \text{if } H(<M, <M>) \text{ accepts}
\end{cases}
\]
Calling H as a Subroutine

Define a Turing Machine D:

D = “On input $<M>$, where M is a TM:
1. Run H on input $<M, <M>>$.
2. Output the opposite of what H outputs.

That is,

$$D(<M>) = \begin{cases}
\text{Accept} & \text{if } H(<M, <M>>) \text{ rejects} \\
\text{Reject} & \text{if } H(<M, <M>>) \text{ accepts}
\end{cases}$$

Remember that, by assumption, H decides A_{TM}.

The Diagonalization Trick

Entry i, j is the value of H on input $\langle M_i, \langle M_j \rangle \rangle$.

<table>
<thead>
<tr>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
</tr>
<tr>
<td>M_2</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
</tr>
<tr>
<td>M_3</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
</tr>
<tr>
<td>M_4</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Calling D on Itself

$$D(<D>) = \begin{cases}
 \text{Accept} & \text{if } D \text{ does not accept } <D> \\
 \text{Reject} & \text{if } D \text{ accepts } <D>
\end{cases}$$

Entry i, j is the value of H on input $\langle M_i, M_j \rangle$.
\(A_{TM} \) is not Turing-Decidable

Theorem. \(A_{TM} = \{ <M, w> | M \text{ is a TM and } M \text{ accepts } w \} \) is undecidable.

Proof.

- We assumed there was a Turing Machine \(H \) that decides \(A_{TM} \)
- Created a Turing Machine \(D \) that uses \(H \)
- Reached a contradiction
- We can conclude Turing Machine \(H \) cannot exist.
- Therefore, \(A_{TM} \) is undecidable.

![Completing the Picture](image-url)