

Undecidable Problems About Languages

Sipser: Section 5.1 pages 215 - 226

Reducibility

Clique and Independent Set

CLIQUE = ${<}6k$ | G is a graph with a k-clique}

INDEPENDENT = $\{\leq \mathcal{G}, k\}$ | G is a graph containing an independent set of size k }

CLIQUE reduces to INDEPENDENT

Certified Impossible

Theorem. $A_{TM} = \{ \langle M, w \mid M \text{ is a TM and } M \text{ accepts } w \} \text{ is }$ undecidable.

Definition. HAL $T_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

The Halting Problem (Again!)

Theorem. *HAL* T_{TM} is undecidable.

Proof Idea. We know A_{TM} is undecidable. We need to reduce one of *HALT*_{TM} or A_{TM} to the other.

Which way to go?

$HALT_{TM}$ is undecidable

- **Proof.** Suppose R decides $HALT_{TM}$. Define
	- $S = "On input < M, w$, where M is a TM and w a string:
		- **1.** Run TM R on input < M, w>.
		- **2.** If R rejects, then *reject*.
		- **3.** If R accepts, simulate M on input ^w until it halts.
		- **4.** If M enters its accept state, accept. If M enters its reject state, reject."

Does M Accept Anything at All?

Definition. $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$

Theorem. E_{TM} is undecidable.

$E_{TM} = \{\langle M \rangle \mid M \text{ is a TM } \& L(M) =$ $\emptyset\}$

Proof. Given an input $\langle M, w \rangle$ we construct a machine M_w as follows:

 M_w = "On input x:

- 1. If $x \neq w$, reject.
- 2. If $x = w$, run *M* on input *w* and *accept* if *M* does."

to be continued …

The Proof Continues

Proof continued.

Suppose TM R decides E_{TM} . Define

 $S = "On input < M, w$:

- **1.** Use the description of M and w to construct M_w .
- **2.** Run R on input $\langle M_{\mu} \rangle$.
- **3.** If R accepts, reject. If R rejects, accept."

With Power Comes Uncertainty

$$
L(M)=\emptyset
$$

 M accepts w $L(M) = \emptyset$ $L(M_1) = L(M_2)$

Turing machines

Pushdown machines

Finite machines

It's Even Worse Than You Thought

Rice's Theorem. Any nontrivial property of the languages recognized by Turing machines is undecidable.

Definition. REGULAR_{TM} = { $\langle M \rangle$ | M is a TM and $L(M)$ is regular}.

Theorem. REGULAR_{TM} is undecidable.

REGULAR_{TM} is undecidable

Proof. Let R be a TM that decides REGULAR_{TM}. Define

- $S = "On input < M, w$:
	- **1.** Construct TM
		- M_2 = "On input x:
			- 1. If x has the form 0^n1^n , accept.
			- **2.** Otherwise, run M on input ^w and accept if M accepts w.
	- **2.** Run R on input $\langle M_2 \rangle$.
	- **3.** If R accepts, accept. Otherwise, if R rejects, reject."

Let EQ_{TM} = { $\langle M_1, M_2 \rangle$ | M_1 and M_2 are TMs and $\mathcal{L}(M_1)$ = $\mathcal{L}(M_2)$ }. Show that EQ_{TM} is undecidable by reducing E_{TM} to EQ_{TM} .

• Consider the problem of determining whether a two-tape TM ever writes a nonblank symbol on its second tape when run on input w . Formulate this problem as a language and show that it is undecidable. (Hint: create an intermediary TM T that writes a nonblank symbol on its second tape iff M accepts w .)