

Undecidable Problems About Languages

Sipser: Section 5.1 pages 215 - 226

Reducibility

Clique and Independent Set

CLIQUE = $\{\langle G, k \rangle \mid G \text{ is a graph with a } k \text{-clique} \}$

INDEPENDENT = {<G,k> | G is a graph containing an independent set of size k}

CLIQUE reduces to INDEPENDENT

Certified Impossible

Theorem. $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \text{ is undecidable.}$

Definition. $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

The Halting Problem (Again!)

Theorem. HAL T_{TM} is undecidable.

Proof Idea. We know A_{TM} is undecidable. We need to reduce one of $HALT_{TM}$ or A_{TM} to the other.

Which way to go?

$HALT_{TM}$ is undecidable

Proof.

- Suppose R decides $HALT_{TM}$. Define
- $S = "On input \langle M, w \rangle$, where M is a TM and w a string:
 - 1. Run TM R on input < M, w>.
 - 2. If *R* rejects, then *reject*.
 - 3. If Raccepts, simulate M on input w until it halts.
 - **4.** If *M* enters its accept state, *accept*. If *M* enters its reject state, *reject*."

Does M Accept Anything at All?

Definition. $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$

Theorem. E_{TM} is undecidable.

$E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM & } L(M) = \emptyset \}$

Proof.

Given an input $\langle M, w \rangle$ we construct a machine M_w as follows:

 M_w = "On input x:

- **1**. If *x* ≠ *w*, *reject*.
- **2.** If x = w, run M on input w and *accept* if M does."

to be continued ...

The Proof Continues

Proof continued.

Suppose TM R decides E_{TM} . Define

S = "On input <*M*, *w*>:

- 1. Use the description of M and w to construct M_w .
- **2.** Run *R* on input $\langle M_{\mu} \rangle$.
- 3. If Raccepts, reject. If R rejects, accept."

With Power Comes Uncertainty

Maccepts w

 $\mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2)$

Turing machines

Pushdown machines

Finite machines

It's Even Worse Than You Thought

Rice's Theorem.

Any *nontrivial property* of the languages recognized by Turing machines is undecidable.

For Example

Definition. *REGULAR*_{TM} = { $\langle M \rangle$ | *M* is a TM and *L*(*M*) is regular}.

Theorem. *REGULAR*_{TM} is undecidable.

REGULAR_{TM} is undecidable

Proof. Let R be a TM that decides $REGULAR_{TM}$. Define

- *S* = "On input <*M*, *w*>:
 - 1. Construct TM
 - M_2 = "On input x:
 - 1. If x has the form $0^{n}1^{n}$, accept.
 - 2. Otherwise, run *M* on input *w* and *accept* if *M* accepts *w*.
 - **2.** Run *R* on input $\langle M_2 \rangle$.
 - **3.** If *R* accepts, *accept*. Otherwise, if *R* rejects, *reject*."

• Let $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$. Show that EQ_{TM} is undecidable by reducing E_{TM} to EQ_{TM} .

• Consider the problem of determining whether a two-tape TM ever writes a nonblank symbol on its second tape when run on input *w*. Formulate this problem as a language and show that it is undecidable. (Hint: create an intermediary TM *T* that writes a nonblank symbol on its second tape iff *M* accepts *w*.)