Undecidable Problems About Languages
Reducibility
Clique and Independent Set

CLIQUE = \{<G,k> \mid G \text{ is a graph with a } k\text{-clique}\}

INDEPENDENT = \{<G,k> \mid G \text{ is a graph containing an independent set of size } k\}
CLIQUE reduces to INDEPENDENT
Certified Impossible

Theorem. \(A_{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ accepts } w \} \) is undecidable.

Definition. \(HALT_{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ halts on input } w \} \)
The Halting Problem (Again!)

Theorem. \(\text{HALT}_{TM} \) is undecidable.

Proof Idea. We know \(A_{TM} \) is undecidable. We need to reduce one of \(\text{HALT}_{TM} \) or \(A_{TM} \) to the other.

Which way to go?
Proof. Suppose R decides HALT_{TM}. Define

$$S = \text{"On input } <M, w>\text{, where } M \text{ is a TM and } w \text{ a string:}$$

1. Run TM R on input $<M, w>$.
2. If R rejects, then reject.
3. If R accepts, simulate M on input w until it halts.
4. If M enters its accept state, accept. If M enters its reject state, reject."
Definition. \[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem. \[E_{TM} \text{ is undecidable.} \]
Proof. Given an input \(<M, w> \) we construct a machine \(M_w \) as follows:

\[M_w = \text{"On input } x:\]

1. If \(x \neq w \), reject.
2. If \(x = w \), run \(M \) on input \(w \) and accept if \(M \) does.

... to be continued ...
The Proof Continues

Proof continued.

Suppose TM \(R \) decides \(E_{TM} \). Define

\[S = \text{"On input } \langle M, w \rangle \text{:\n1. Use the description of } M \text{ and } w \text{ to construct } M_w. \n2. \text{ Run } R \text{ on input } \langle M_w \rangle. \n3. \text{ If } R \text{ accepts, reject. If } R \text{ rejects, accept."} \]
With Power Comes Uncertainty

M accepts w \hspace{1cm} $L(M) = \emptyset$ \hspace{1cm} $L(M_1) = L(M_2)$

Turing machines

Pushdown machines

Finite machines
Rice’s Theorem. Any *nontrivial property* of the languages recognized by Turing machines is undecidable.
For Example

Definition. \(\text{REGULAR}^\text{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \} \).

Theorem. \(\text{REGULAR}^\text{TM} \) is undecidable.
REGULAR_TM is undecidable

Proof. Let R be a TM that decides REGULAR_TM. Define

$$S = \text{"On input } <M, w>:\n$$

1. Construct TM

 \[M_2 = \text{"On input } x:\]
 1. If x has the form 0^n1^n, accept.
 2. Otherwise, run M on input w and accept if M accepts w.

2. Run R on input $<M_2>$.

3. If R accepts, accept. Otherwise, if R rejects, reject."
Problems

• Let $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$. Show that EQ_{TM} is undecidable by reducing E_{TM} to EQ_{TM}.

• Consider the problem of determining whether a two-tape TM ever writes a nonblank symbol on its second tape when run on input w. Formulate this problem as a language and show that it is undecidable. (Hint: create an intermediary TM T that writes a nonblank symbol on its second tape iff M accepts w.)