Undecidability
A_{TM} is not Turing-Decidable

Theorem. $A_{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ accepts } w \}$ is undecidable.

Proof.

- We assumed there was a Turing Machine H that decides A_{TM}.
- Created a Turing Machine D that uses H.
- Reached a contradiction.
- We can conclude Turing Machine H cannot exist.
- Therefore, A_{TM} is undecidable.
Turing Recognizable vs Turing Decidable

Theorem. A language is Turing-decidable if and only if both it and its complement are Turing-recognizable.

Proof. (=>) By definition.

(<=) Simulate, in parallel, M_L on tape 1 and $M_{\overline{L}}$ on tape 2
\overline{A}_{TM} is not even Turing-recognizable

Lemma: \overline{A}_{TM} is not Turing-recognizable.

Proof idea: How can we use the previous theorem to show this?
More Undecidability

- We know A_{TM} is undecidable, but what do other undecidable problems look like?
- We will prove some other problems are undecidable (unsolvable by a TM)
- Primary method of showing problems are unsolvable: reductions
Looking at A_{TM} once again

$U = \text{“On input } <M, w>, \text{ where } M \text{ is a TM and } w \text{ a string:} \text{”}$

1. Simulate M on input w.

2. If M ever enters its accept state, accept. If M ever enters its reject state, reject.”

3 possibilities:
- M halts and accepts
- M halts and rejects
- M does not halt
Looking at A_{TM} once again

$U = \text{“On input } <M, w>\text{, where } M \text{ is a TM and } w \text{ a string:} \text{”}$

1. Simulate M on input w.

2. If M ever enters its accept state, accept. If M ever enters its reject state, reject.”

3 possibilities:
- M halts and accepts
- M halts and rejects
- M does not halt
The Halting Problem

We could use U to decide A_{TM} if we could determine whether M would halt on input w.

“On input $<M, w>$, where M is a TM and w a string:

1. Determine whether M on input w will halt. If not, then reject.
2. Simulate M on input w.
3. If M enters its accept state, accept. If M enters its reject state, reject.”
The Halting Problem

We could use \(U \) to decide \(A_{TM} \) if we could determine whether \(M \) would halt on input \(w \).

“On input \(<M, w> \), where \(M \) is a TM and \(w \) a string:

1. Determine whether \(M \) on input \(w \) will halt. If not, then reject.
2. Simulate \(M \) on input \(w \).
3. If \(M \) enters its accept state, accept. If \(M \) enters its reject state, reject.”

Definition. \(HALT_{TM} = \{ <M, w> | M \text{ is a TM and } M \text{ halts on input } w \} \).
HALT$_{TM}$ is undecidable

Proof. Suppose TM R decides $HALT_{TM}$. Define

$S = \text{"On input } <M, w>, \text{ where } M \text{ is a TM and } w \text{ a string:}

1. Run TM R on input $<M, w>$.
2. If R rejects, then reject.
3. If R accepts, simulate M on input w until it halts.
4. If M enters its accept state, accept. If M enters its reject state, reject."
HALT\textsubscript{TM} is undecidable

Proof. Suppose TM \(R \) decides \(HALT \textsubscript{TM} \). Define

\(S = \) “On input \(<M, w>\), where \(M \) is a TM and \(w \) a string:

1. Run TM \(R \) on input \(<M, w>\).
2. If \(R \) rejects, then reject.
3. If \(R \) accepts, simulate \(M \) on input \(w \) until it halts.
4. If \(M \) enters its accept state, accept. If \(M \) enters its reject state, reject.”

Question. Where is the contradiction?
Reducibility
Reducibility

- Problem A reduces to Problem B
- If we can use the solution to B to solve A, that is,
- Solution to B leads to Solution to A
Using Reductions

- We used A_{TM} to show that $HALT_{TM}$ is undecidable

- Which problem played the role of problem A? Which was problem B?

Solution to B leads to Solution to A
Does M Accept Anything at All?

Definition. $E_{TM} = \{ <M> \mid M \text{ is a TM and } L(M) = \emptyset \}$

Theorem. E_{TM} is undecidable.
E_{TM} is undecidable

Proof. Suppose TM R decides E_{TM}.

Question. Can R be used to decide A_{TM}?
E_{TM} is undecidable

Given an input $<M, w>$ we construct an intermediate TM M_w as follows:

$M_w =$ “On input x:
1. If $x \neq w$, reject.
2. If $x = w$, run M on input w and accept if M does.”

Note that w is not given as input to M_w (it is hardcoded in its description).
E_{TM} is undecidable

Given an input $<M, w>$ we construct an intermediate TM M_w as follows:

$M_w =$ “On input x:

1. If $x \neq w$, reject.
2. If $x = w$, run M on input w and accept if M does.”

Note that w is not given as input to M_w (it is hardcoded in its description).

Question. If M accepts w, what can we reason about $L(M_w)$?
E_{TM} is undecidable

Proof. Suppose TM R decides E_{TM}.

Define $S =$ “On input $<M, w>$:

1. Use the description of M and w to construct M_w.
2. Run R on input $<M_w>$.
3. If R accepts, reject. If R rejects, accept.”
Construct M_w s.t. $L(M_w)$ is nonempty if and only if M accepts w

If $x \neq w$, reject.
Else run M on w, accept if M accepts

S: Decider for A_{TM}

R: Black-box decider for E_{TM}
Exercise

- \(EQ_{\text{TM}} = \{ <M_1, M_2> | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \).

Show that \(EQ_{\text{TM}} \) is undecidable by reducing \(E_{\text{TM}} \) to \(EQ_{\text{TM}} \).

- \(\text{REGULAR}_{\text{TM}} = \{ <M> | M \text{ is a TM and } L(M) \text{ is regular}\} \).

Show that \(\text{REGULAR}_{\text{TM}} \) is undecidable by reducing \(A_{\text{TM}} \) to \(\text{REGULAR}_{\text{TM}} \).
Mapping Reducibility

- A “computable” function f exists that converts instances of Problem A to Problem B.

- If have such a conversion, called reduction, we can use the solver for Problem B to solve Problem A.
Computable Function

- It is a function that a Turing machine can compute

Definition. A function \(f: \Sigma^* \rightarrow \Sigma^* \) is a *computable function* if some Turing machine \(M \), on every input \(w \), halts with just \(f(w) \) on its tape.

- For example, arithmetic functions
 - TM that takes as input \(<m, n>\), and returns \(m+n \) on its tape.
Mapping Reducibility

Definition. Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$
EQ_{TM} is undecidable

- We showed this by defining a reduction from ?

- Considering this reduction
 - What is A?
 - What is B?
 - What is function f?
EQ_{TM} is undecidable

- We showed this by defining a reduction from ?

- Considering this reduction
 - What is A?
 - What is B?
 - What is function f?

- We can say that $E_{TM} \leq_{m} EQ_{TM}$