Mapping Reducibility
$E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM} \& \mathcal{L}(M) = \emptyset \}$

Theorem. E_{TM} is undecidable.

Proof. Given an input $\langle M, w \rangle$ we construct a machine M_w that accepts a nonempty language iff M accepts w:

$M_w = \text{“On input } x$:
1. If $x \neq w$, reject.
2. If $x = w$, run M on input w and accept if M does.”

Suppose TM R decides E_{TM} and establish a contradiction by creating a decider S of A_{TM}:

$S = \text{“On input } \langle M, w \rangle$:
1. Use the description of M and w to construct M_w.
2. Run R on input $\langle M_w \rangle$.
3. If R accepts, reject. If R rejects, accept.”
Computable Functions
Computable Functions

Definition. A function $f : \Sigma^* \rightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.

Example. The *increment function*

$$inc^+ : \{1\}^* \rightarrow \{1\}^*$$

is Turing computable.
Machine Transformers

\[F = \text{“On input } < M > \text{:} \]

1. Construct the machine

\[M_\infty = \text{“On input } x \text{:} \]
 1. Run \(M \) on \(x \).
 2. If \(M \) accepts, \textit{accept}.
 3. If \(M \) rejects, loop.

2. Output \(< M_\infty > \)."
Mapping Reducibility

Definition. Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$
Problem Reduction

Theorem. If \(A \leq_m B \) and \(B \) is decidable, then \(A \) is decidable.
The Contrapositive is Also Useful

Theorem. If $A \leq_m B$ and B is decidable, then A is decidable.

Corollary. If $A \leq_m B$ and A is undecidable, then B is undecidable.
Similarly ...

Theorem. If \(A \leq_m B \) and \(B \) is Turing-recognizable, then \(A \) is Turing-recognizable.

Corollary. If \(A \leq_m B \) and \(A \) is not Turing-recognizable, then \(B \) is not Turing-recognizable.
A Familiar Mapping Reduction

\[A_{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ accepts } w \} \]

\[\leq_{m} \]

\[HALT_{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ halts on input } w \} \]
\[A_{TM} \leq_m \text{HALT}_{TM} \]

\(F = \) “On input \(<M, w> \):

1. Construct the machine

 \(M_\infty = \) “On input \(x \):

 1. Run \(M \) on \(x \).

 2. If \(M \) accepts, accept.

 3. If \(M \) rejects, loop.

2. Output \(<M_\infty, w> \).”
Solvable, Half-Solvable, Out-to-Lunch
\[\text{EQ}_{TM} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \} \]
is Out-to-Lunch

Theorem. \(\text{EQ}_{TM} \) is neither Turing-recognizable nor co-Turing-recognizable.

Proof. We show \(A_{TM} \leq_m \text{EQ}_{TM} \). Why does this help?
$A_{TM} \leq_m EQ_{TM}$

$G = \text{"On input } <M, w>:\$

1. Construct the following two machines:
 $M_1 = \text{"On any input:} $

 1. Accept."

 $M_2 = \text{"On any input } x:$

 1. Ignore x and run M on w. If it accepts, accept."

2. Output $<M_1, M_2>$."

\[
\begin{array}{c}
\node[state,fill=white] (A) at (0,0) {A_{TM}};
\node[state,fill=white] (B) at (2,0) {EQ_{TM}};
\node[state,fill=white] (C) at (-2,0) {$A_{\overline{TM}}$};
\node[state,fill=white] (D) at (2,-2) {$\overline{EQ_{TM}}$};
\end{array}
\]

\[
\begin{array}{c}
\node[state,fill=white] (A) at (0,0) {A_{TM}};
\node[state,fill=white] (B) at (2,0) {EQ_{TM}};
\node[state,fill=white] (C) at (-2,0) {$A_{\overline{TM}}$};
\node[state,fill=white] (D) at (2,-2) {$\overline{EQ_{TM}}$};
\end{array}
\]
Theorem. \(\overline{EQ_{TM}} \) is not Turing-recognizable.

Proof. We show \(A_{TM} \leq_m \overline{EQ_{TM}} \).

\[
\begin{align*}
\text{EQ}_{TM} & \text{ is not Turing-recognizable} \\
\text{EQ}_{TM} & \text{ is neither Turing-recognizable nor co-Turing-recognizable.}
\end{align*}
\]
\(A_{TM} \leq_m E_{Q_{TM}} \)

\[F = \text{"On input } \langle M, w \rangle \text{:} \]

1. Construct the following two machines:

 \(M_1 = \text{"On any input:} \]

 1. \(\text{Reject.} \)

 \(M_2 = \text{"On any input } x \text{:} \]

 1. \(\text{Ignore } x \text{ and run } M \text{ on } w. \)

 If it accepts, \(\text{accept.} \)

2. Output \(\langle M_1, M_2 \rangle \)."
1. Show that A_{TM} is not mapping reducible to E_{TM}.
 (Hint: Use the fact that A_{TM} is not Turing-recognizable whereas E_{TM} is Turing-recognizable.)

2. Show that if P is Turing-recognizable and $P \leq_m \overline{P}$, then P is decidable.