

Mapping Reducibility

Sipser: Section 5.3 pages 234 - 238

 $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM & } L(M) = \emptyset \}$

Theorem. E_{TM} is undecidable.

Proof.

Given an input < *M*, *w*> we construct a machine *M*_w that accepts a nonempty language iff *M* accepts *w*:

$$M_w$$
 = "On input x.

- **1**. If *x* ≠ *w*, *reject*.
- 2. If x = w, run M on input w and accept if M does."

Suppose TM R decides E_{TM} and establish a contradiction by creating a decider S of A_{TM} :

S = "On input <*M*, *w*>:

- 1. Use the description of M and w to construct M_w .
- **2.** Run *R* on input $\langle M_{\mu} \rangle$.
- 3. If Raccepts, reject. If R rejects, accept."

Computable Functions

Computable Functions

- **Definition.** A function $f: \Sigma^* \to \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.
- **Example**. The increment function $inc^{*+}: \{1\}^* \rightarrow \{1\}^*$
 - is Turing computable.

Machine Transformers

F = "On input <*M*>:

1. Construct the machine

 M_{∞} = "On input x:

- **1**. Run *M* on *x*.
- 2. If *M* accepts, *accept*.
- 3. If M rejects, loop."

2. Output <*M*_∞>."

Mapping Reducibility

Definition. Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every w,

 $w \in A \Leftrightarrow f(w) \in B$.

Problem Reduction

Theorem. If $A \leq_m B$ and B is decidable, then A is decidable.

The Contrapositive is Also Useful

Theorem. If $A \leq_m B$ and B is decidable, then A is decidable.

Corollary. If $A \leq_m B$ and A is undecidable, then B is undecidable.

Similarly ...

Theorem. If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Corollary. If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

A Familiar Mapping Reduction

$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ \leq_m

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

 $A_{TM} \leq_m HALT_{TM}$

F = "On input <*M*, *w*>:

- 1. Construct the machine
 - M_{∞} = "On input x:
 - **1**. Run *M* on *x*.
 - 2. If *M* accepts, *accept*.
 - 3. If M rejects, loop.
- **2**. Output <*M*_∞, *w*>."

Solvable, Half-Solvable, Out-to-Lunch

$EQ_{TM} = \{ \langle M_1, M_2 \rangle | L(M_1) = L(M_2) \}$ is Out-to-Lunch

Theorem. EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

Proof.

We show $A_{TM} \leq_m EQ_{TM}$. Why does this help?

G = "On input < M, w>:

- 1. Construct the following two machines:
 - M_1 = "On any input:
 - 1. Accept."
 - M_2 = "On any input x:
 - Ignore x and run M on w.
 If it accepts, accept."
- **2**. Output < *M*₁, *M*₂>."

EQ_{TM} is not Turing-recognizable

Theorem. EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

Proof.

F = "On input <*M*, *w*>:

- 1. Construct the following two machines:
 - M_1 = "On any input:
 - 1. Reject."
 - M_2 = "On any input x:
 - Ignore x and run M on w.
 If it accepts, accept."
- **2**. Output < *M*₁, *M*₂>."

1. Show that A_{TM} is not mapping reducible to E_{TM} . (Hint: Use the fact that $\overline{A_{TM}}$ is not Turing-recognizable whereas $\overline{E_{TM}}$ is Turing-recognizable.)

2. Show that if *P* is Turing-recognizable and $P \leq_m P$, then *P* is decidable.