

Measuring Time Complexity

Sipser: Section 7.1 pages 275 - 284

Solvable in Theory ...

Measuring Difficultly

How hard is it to recognize $\{0^k1^k \mid k \ge 0\}$?

$- \underbrace{S_1} \underbrace{S_2}$

An Algorithm

 M_1 = "On input string w

- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- 2. Repeat the following if both 0s and 1s remain.
- 3. Scan across tape, crossing off a single 0 and a single 1.
- 4. If either 0 or 1 remains, reject. Otherwise, accept."

Number of Steps Depends on Size of Input

The Good, the Bad, and the Average

Time Complexity

Definition. The *time complexity* of TM M is the function $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps that M uses on any input of length n.

Asymptotic Analysis

$$- \underbrace{ \begin{bmatrix} 1 & 0 & 1 \\ S_1 & S_2 \end{bmatrix}}_{1}$$

Big O, Little o

Definition. Consider $f, g: \mathbb{N} \to \mathbb{R}^+$. Say that $f(n) = \mathcal{O}(g(n))$ if positive integers c and n_0 exist such that for every $n \ge n_0$ $f(n) \le c g(n)$

Definition. Consider
$$f, g: \mathbb{N} \to \mathbb{R}^+$$
. Say that $f(n) = o(g(n))$ if $\lim_{n \to \infty} f(n)/g(n) = 0$

$$-\underbrace{\left(\begin{array}{c} 1 \\ S_1 \end{array}\right)}_{0}\underbrace{\left(\begin{array}{c} 1 \\ S_2 \end{array}\right)}_{0}$$

True or False?

1.
$$8n + 5 = O(n)$$

2.
$$8n + 5 = o(n)$$

3.
$$\int n = o(n)$$

4.
$$\log_2 n = o(\ln n)$$

5.
$$n \log \log n = o(n \log n)$$

6.
$$n^2 = o(n \log n)$$

The Verdict Please ...

 M_1 = "On input string w

- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- 2. Repeat the following if both 0s and 1s remain.
- 3. Scan across tape, crossing off a single 0 and a single 1.
- 4. If either 0 or 1 remains, reject. Otherwise, accept."

Time Complexity Classes

Definition. Let $t: \mathbb{N} \to \mathbb{N}$ be a function. Define the time complexity class, TIME(t(n)), to be

 $TIME(t(n)) = \{ L \mid L \text{ is decided by } O(t(n)) \text{ time } TM \}$

Example. The language $\{0^k1^k \mid k \ge 0\} \in TIME(n^2)$.*

^{*} And TIME(n^3) and TIME(n^4) and ...

Losing TIME Complexity

 M_2 = "On input string w

- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- 2. Repeat the following if both 0s and 1s remain.
- 3. Scan across tape, checking whether the total number of Os and 1s remaining on the tape is even or odd. If odd, reject.
- 4. Scan again across tape, crossing off every other 0 and every other 1.
- 5. If no 0s or 1s remain, accept. Otherwise, reject."

$$-\underbrace{\left(\begin{array}{c} 1 \\ S_1 \end{array}\right)}_{0}\underbrace{\left(\begin{array}{c} 1 \\ S_2 \end{array}\right)}_{0}$$

Better Still???

Theorem. Let $f: \mathbb{N} \to \mathbb{N}$ belong to $o(n \log n)$. If language $A \in TIME(f)$, then A is regular.

Ah, But What If We Had Two Tapes ...

Well, Then We Could Do Better Still!*

Theorem. Let t(n) be a function, where $t(n) \ge n$. Then every t(n) time multitape Turing machine has an equivalent $O(t^2(n))$ time single-tape Turing machine.

Proof. Compare the time complexity of the given multitape machine with the equivalent single tape machine that simulates it.

How Costly Is Nondeterminism?

Theorem.

Let f(n) be a function, where $f(n) \ge n$. Then every f(n) time nondeterministic single-tape Turing machine has an equivalent $2^{O(f(n))}$ time deterministic single-tape Turing machine.

Proof.

Compare the time complexity of the given nondeterministic machine with the equivalent single tape deterministic machine that simulates it.

