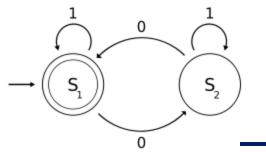


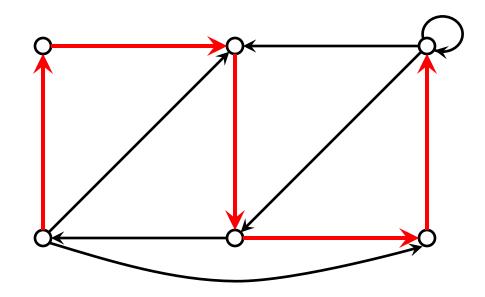
NP-Complete Problems

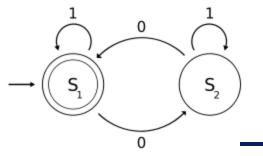
Sipser: Section 7.5 pages 311 - 322



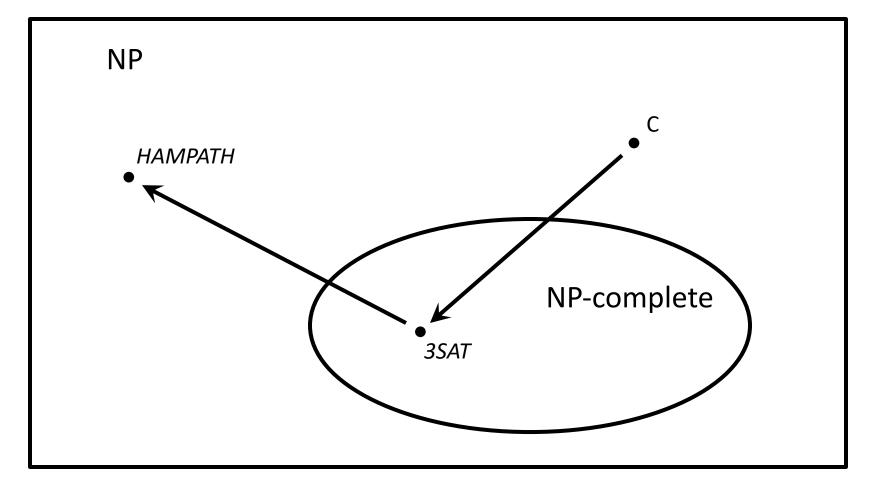
More NP-Complete Problems

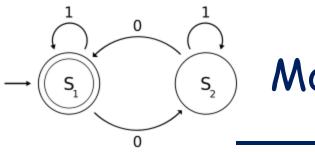
Theorem. HAMILTONIAN PATH is NP-complete.





We Reduce 3SAT to HAMPATH



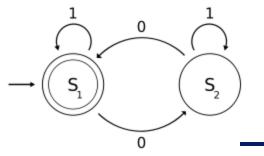


More Precisely,

Proof Outline. Given an instance of 3SAT,

$$\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_4 \lor x_5)$$

we construct a directed graph G so that φ is satisfiable iff G has a Hamiltonian path.



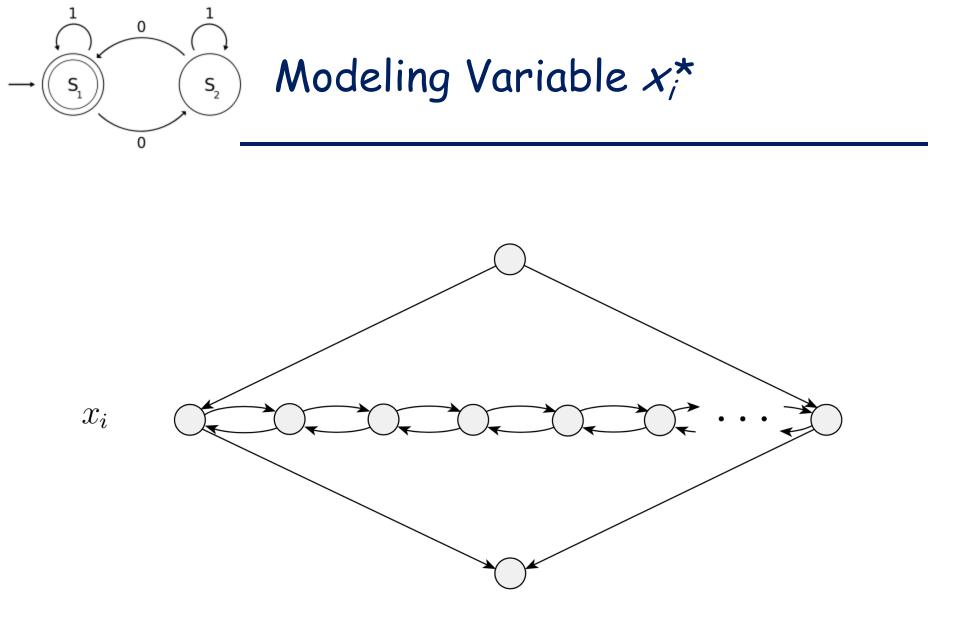
35AT's Salient Features*

Choice. Each variable has a choice between two truth values.

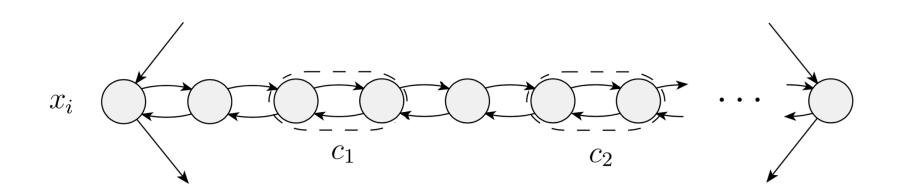
Consistency. Different occurrences of the same variable have the same value.

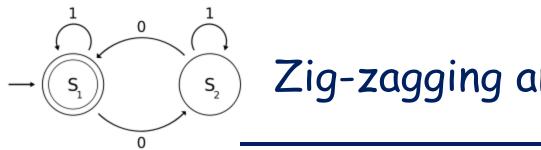
Constraints. Variable occurrences are organized into *clauses* that provide constraints that must be satisfied.

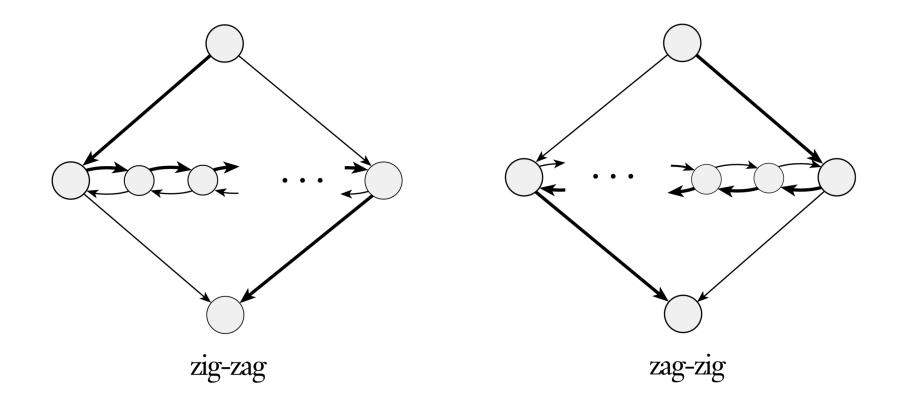
* We model each of these three features by a different "gadget" in the graph G.



* The choice gadget.



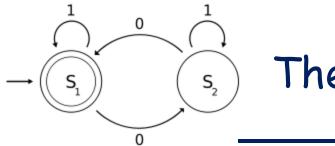




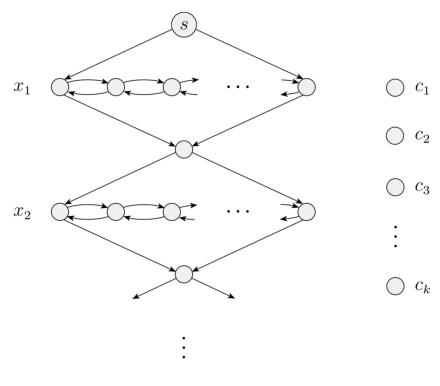
* The consistency gadget in action.

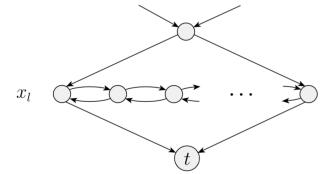


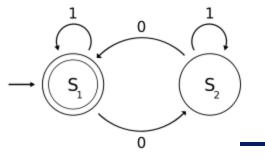
 \bigcirc c_j



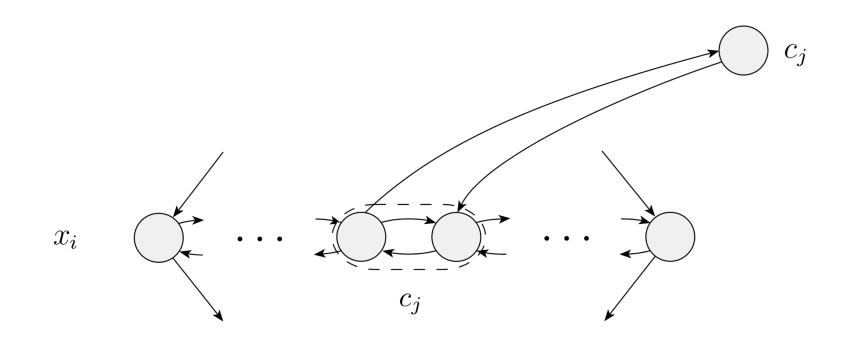
The Big Picture

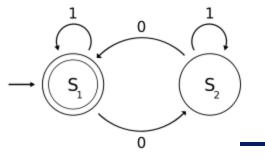




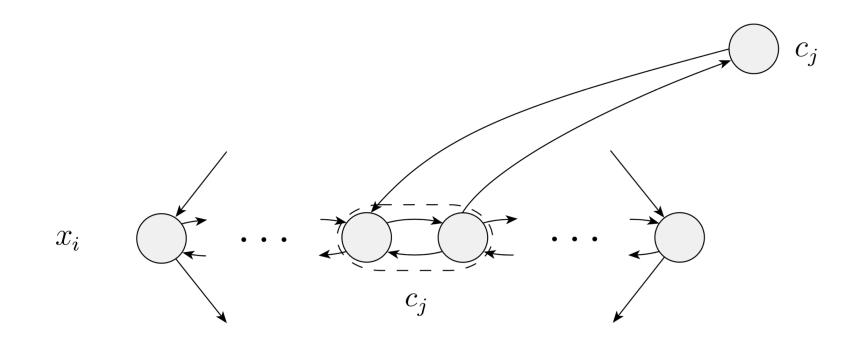


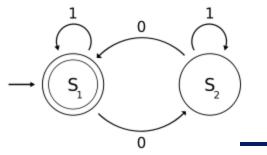
The Constraint Gadget when c_j Contains x_i



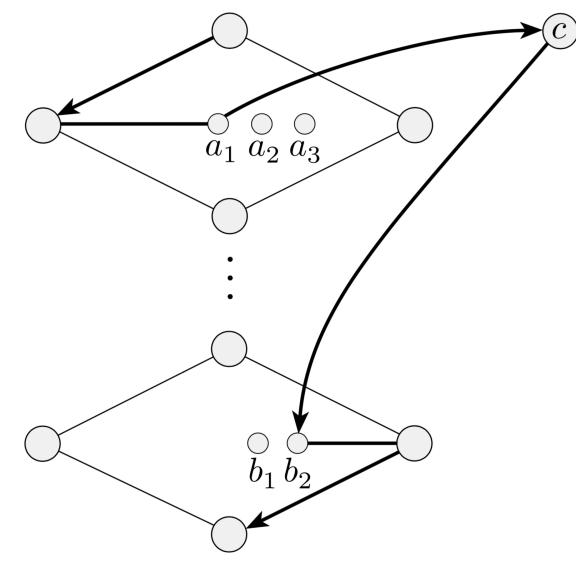


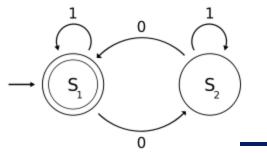
The Constraint Gadget when c_j Contains $\neg x_i$



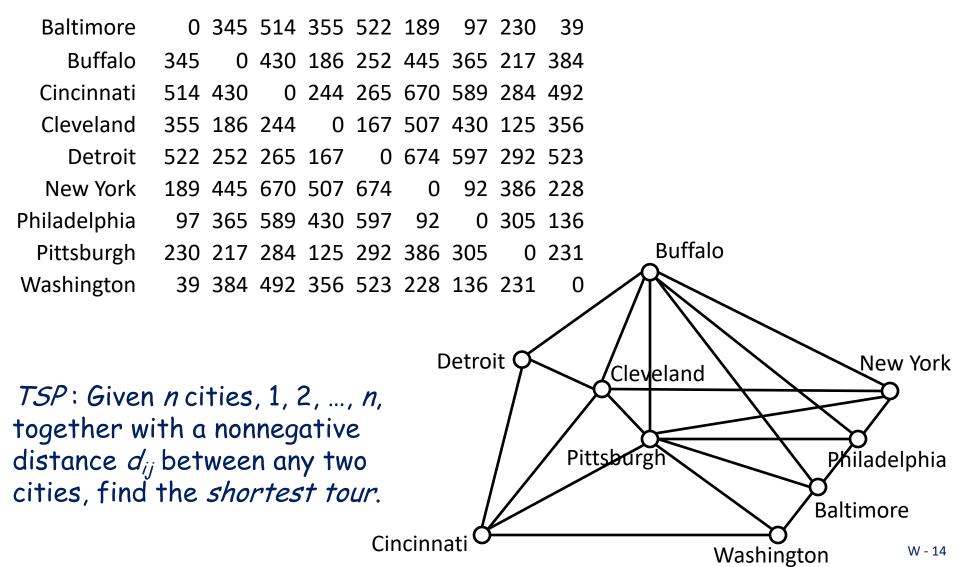


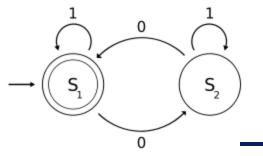
A Situation that Cannot Occur



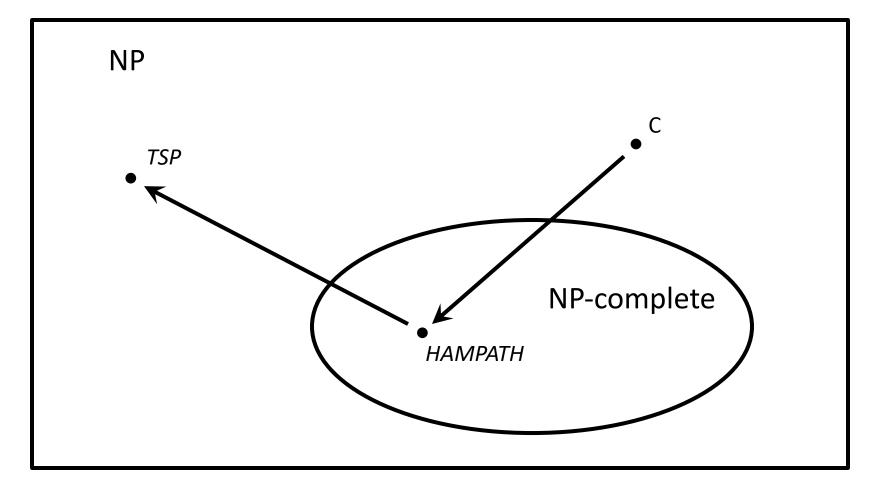


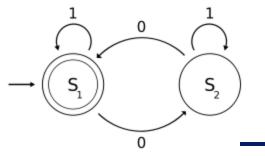
TSP is NP-Complete





We Reduce HAMPATH to TSP

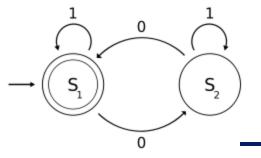




SUBSET-SUM is NP-Complete

SUBSET-SUM: Given a set of integers, does any subset sum to t?

	45	-18	4		16		-21	
201			-8		-12			115
	-64	-17		14		61	94	
-190	77	-8	9	23	51		-79	
48	,,		57	23	-10)6 -3!	ō	
1	41 -23	19		2	28		81	

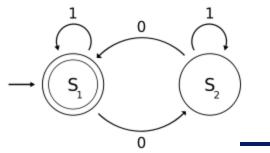


SUBSET-SUM is NP-Complete

We show $3SAT \leq_p SUBSET-SUM$ as in the following example. Given $(x_1 \lor \neg x_2 \lor x_3) \land$ $(x_2 \lor x_3 \lor \dots) \land$ $\dots \land$ $(\neg x_3 \lor \dots)$ we construct:

	1	2	3	4	•••	l	c_1	c_2	•••	c_k
y_1	1	0	0	0	•••	0	1	0	•••	0
z_1	1	0	0	0	•••	0	0	0	•••	0
y_2		1	0	0	•••	0	0	1	•••	0
z_2		1	0	0	•••	0	1	0	•••	0
y_3			1	0	•••	0	1	1	•••	0
z_3			1	0	•••	0	0	0	•••	1
÷					••.	:			:	:
y_l						1	0	0	•••	0
z_l						1	0	0	•••	0
g_1							1	0	•••	0
h_1							1	0	•••	0
g_2								1	•••	0
h_2								1	•••	0
:									••.	:
g_k										1
h_k										1
t	1	1	1	1	•••	1	3	3	•••	3

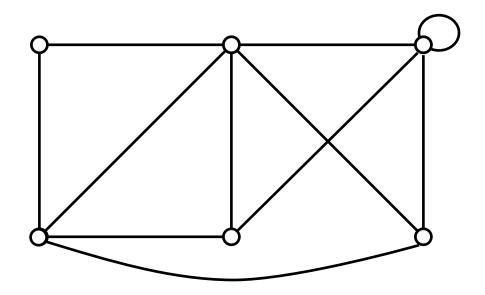
W - 17

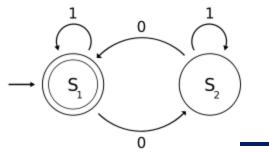


VERTEX-COVER is NP-Complete

If G is an undirected graph, a *vertex cover* of G is a subset of the nodes where every edge of G touches one of those nodes.

Theorem. VERTEX-COVER is NP-Complete.





SET-COVER is NP-Complete

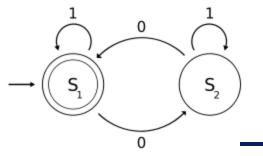
Given a set S and a collection of subsets from S, do any k of the subsets unioned together equal S?

S = {red, blue, yellow, green, purple, brown, silver, black, gold, white, orange, pink}

Subsets:

{red, blue, silver, pink}
{yellow, gold, white, orange}
{green, silver, gold, white}
{red, green, black, orange}
{green, purple, brown, black}
{brown, black, white, pink}

Theorem. SET-COVER is NP-Complete.



SET-COVER is NP-Complete

Theorem. SET-COVER is NP-Complete.

$$S = \{A, B, C, D, E, F, G, H, I, J, K\}$$

