Nondeterminism
Let \(A = \{ w \mid w \text{ is a string of } 0\text{s and } 1\text{s containing an odd number of } 1\text{s} \} \) and let \(B = \{ w \mid w \text{ is a string of } 0\text{s and } 1\text{s containing an even number of } 1\text{s} \} \).

Construct a (nondeterministic) machine \(N \) that recognizes language \(A \circ B \).
Something's Fishy

\[\epsilon \]

\[q_1 \]
\[q_2 \]
\[\hat{q}_1 \]
\[\hat{q}_2 \]
Relaxing the Rules

Deterministic (DFA)

Nondeterministic (NFA)
How Does That Compute?

Deterministic computation

- start
- ...
- accept or reject

Nondeterministic computation

- reject
- ...
- accept
For Example

\(N_1 \)

Input 010110

Symbol read

0 \(\rightarrow \) \(q_1 \)

1 \(\rightarrow \) \(q_2 \)

0, \(\varepsilon \) \(\rightarrow \) \(q_3 \)

1 \(\rightarrow \) \(q_4 \)
Another Example
A nondeterministic finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

1. \(Q\) is a finite set called the states,
2. \(\Sigma\) is a finite set called the alphabet,
3. \(\delta : Q \times \Sigma \epsilon \rightarrow \mathcal{P}(Q)\) is the transition function,
4. \(q_0 \in Q\) is the start state, and
5. \(F \subseteq Q\) is the set of accept states.
Let \(N = (Q, \Sigma, \delta, q_0, F) \) be an NFA and \(w \) a string over the alphabet \(\Sigma \). Then \(N \) accepts \(w \) if we can write \(w = y_1 y_2 \cdots y_m \), where each \(y_i \) is a member of \(\Sigma_\varepsilon \) and a sequence of states \(r_0, r_1, \ldots, r_m \) exists in \(Q \) with three conditions:

1. \(r_0 = q_0 \),
2. \(r_{i+1} \in \delta(r_i, y_{i+1}) \), for \(i = 0, \ldots, m-1 \), and
3. \(r_m \in F \).
Build an NFA that recognizes the language $B = \{ w \mid w$ is a string of as and bs that starts and ends with the same symbol and contains at least two symbols $\}$.
When You Can't Prove What You Want...

Theorem. The class of regular languages is closed under concatenation.
Theorem. The class of regular languages recognized by NFAs is closed under concatenation.

Proof.
Kleene Star

Theorem. The class of regular languages recognized by NFAs is closed under Kleene star.

Proof.
Suppose ...

... somebody showed that the class of languages accepted by NFAs and the class of languages accepted by DFAs were equal ...

Theorem. A language is regular if and only if it is accepted by a nondeterministic finite automata.
We Would Have ...

Corollary. The class of regular languages is closed under concatenation.

Corollary. The class of regular languages is closed under Kleene star.
We Also Have a Nifty Proof of Closure Under Unions*

Theorem. The class of regular languages is closed under union.

Proof.

*Which turns out to help construct machines for recognizing regular languages.