

The Equivalence of NFAs and DFAs

Sipser: Section 1.2 pages 54 - 58

Unfinished Business

- **Theorem.** A language is regular if and only if it is accepted by a nondeterministic finite automaton.
- **Proof.** (\Rightarrow) Let *A* be a regular language ...

A finite automaton is a 5-tuple ($Q, \Sigma, \delta, q_0, F$), where

- 1. Q is a finite set called the states,
- 2. Σ is a finite set called the **alphabet**,
- 3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- 4. $q_0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states.

A nondeterministic finite automaton is a 5-tuple (Q, Σ , δ, q_0, F), where

- 1. Q is a finite set called the states,
- 2. Σ is a finite set called the **alphabet**,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \to P(Q)$ is the transition function,
- 4. $q_0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states.

Going the Other Way

- **Theorem.** A language is regular if and only if it is accepted by a nondeterministic finite automaton.
- **Proof.** (⇐) Suppose A is accepted by a nondeterministic finite automaton ...

Equivalent Languages

Definition. Two machines are *equivalent* if they recognize the same language.

Theorem. Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Proof.

You Only Go Around Once

Proof. Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA recognizing language A.

We construct a DFA M recognizing A.

1. Q' = P(Q).

2. For $R \in Q'$ and $a \in \Sigma$, let $\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$.

3. $q_0' = \{q_0\}.$

4. $F' = \{R \in Q' \mid R \text{ contains an accept state of } N\}.$

Modifying Our Construction

Proof. Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA recognizing language A.

We construct a DFA M recognizing A.

1. Q' = P(Q).

2. For $R \in Q'$ and $a \in \Sigma$, let $\delta'(R, a) = \bigcup_{r \in R} E(\delta(r, a))$. where $E(R) = \{q \mid q \text{ can be reached from } R along 0 \text{ or more } \varepsilon \text{ arrows } \}$.

3. $q_0' = E(\{q_0\}).$

4. $F' = \{R \in Q' \mid R \text{ contains an accept state of } N\}.$

