Closure Under Regular Operations
Warm Up

Design an NFA that recognizes the language
\[\{ w \in \{a\}^* \mid |w| \text{ is divisible by 3 or 5} \}. \]
Theorem. The class of regular languages is closed under the union operation.

Proof.
The class of regular languages is closed under the union operation.

Proof.
Theorem. The class of regular languages is closed under the union operation.

Proof. Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$, for a new state q_0.
2. q_0 is the start state of N.
3. $F = F_1 \cup F_2$.
4. For any $q \in Q$ and any $a \in \Sigma$, the transition function $\delta(q, a)$ is defined as follows:

 $\delta(q, a) = \begin{cases}
 \delta_1(q, a) & q \in Q_1 \\
 \delta_2(q, a) & q \in Q_2 \\
 \{q_1, q_2\} & q = q_0 \text{ and } a = \varepsilon \\
 \emptyset & q = q_0 \text{ and } a \neq \varepsilon
 \end{cases}$
Closure of Regular Languages
Under Concatenation Using NFAs

Theorem. The class of regular languages is closed under the concatenation operation.

Proof.
Theorem. The class of regular languages is closed under the concatenation operation.

Proof. Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2.

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$.

Closure of Regular Languages
Under Concatenation Using NFAs
Theorem. The class of regular languages is closed under the Kleene star operation.

Proof.
The class of regular languages is closed under the Kleene star operation.

Proof. Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1. Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^*.
Prove that every NFA can be converted to an equivalent one that has a single accept state.