

Regular Expressions

Sipser: Section 1.3 pages 63 - 69

NFA Exercise

Consider the following NFA $N = (Q, \Sigma, \delta, q_1, F_1)$ where

$$Q = \{q_1, q_2, q_3\}$$

$$\Sigma = \{a, b\}$$

 q_1 is the start state

$$F = \{q_3\}$$

$$\delta(q_1, a) = \{q_2, q_3\}$$

$$\delta(q_1, b) = \emptyset$$

$$\delta(q_2, \alpha) = \emptyset$$

$$\delta(q_2, b) = \{q_2\}$$

$$\delta(q_3, \alpha) = \{q_1, q_2\}$$

$$\delta(q_3, b) = \{q_2, q_3\}$$

$$\delta(q, \varepsilon) = \emptyset$$
 for all $q \in Q$

Regular Expressions

$$R^+$$

Long Ago in a Place Not Far Away

Old Home Week

Regular Expressions

Definition. Say that R is a regular expression if R is

- 1. a for some a in the alphabet Σ ,
- 2. ε,
- 3. Ø,
- 4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- 5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions,
- 6. $(R_1)^*$, where R_1 is a regular expression.

Working with Regular Expressions

```
0*10* = \{ w \mid w \text{ is a string of odd length } \}
= \{ w \mid w \text{ is a string of odd length } \}
(0 \cup \varepsilon)(1 \cup \varepsilon) =
(01)*\emptyset =
(+ \cup - \cup \varepsilon)(DD* \cup DD*.D* \cup D^*.DD*) =
\text{where } D = \{0,1,2,3,4,5,6,7,8,9\}
```


Identities

Let R be a regular expression.

- *R*∪∅=
- *R* ∘ ε =
- **R**∪ε=
- *R* ∘ Ø =

Regular Expressions and NFAs

Theorem. A language is regular if and only if some regular expression describes it.

Proof. (\Leftarrow)

- 1. If $a \in \Sigma$, then a is regular.
- 2. ϵ is regular.
- 3. Ø is regular.
- 4. If R_1 and R_2 are regular, then $(R_1 \cup R_2)$ is regular.
- 5. If R_1 and R_2 are regular, then $(R_1 \circ R_2)$ is regular.
- 6. If R_1 is regular, then $(R_1)^*$ is regular.

Build an NFA that recognizes the regular expression: (ab \cup a)*

Proof in Action

Build an NFA that recognizes the regular expression: