
I - 1

Context-Free Languages

Sipser: Section 2.1 pages 101 - 111

I - 2

Extending Our Reach

Finite automata and people are language recognition
devices.

Regular expressions and people are language generating
devices.

Finite automata recognize and regular expressions generate
an important but limited class of languages.

I - 3

People Languages

A grammar for the English language tells us whether a
particular sentence is well formed or not.

A typically English grammar is "a sentence can consist of a
noun phrase followed by a predicate."

More concisely, we write
<sentence> → <noun_phrase> <predicate>

I - 4

So What's a Noun Phrase?

A sentence is
<sentence> → <noun_phrase> <predicate>

We must also provide definitions for the newly introduced
constructs <noun_phrase> and <predicate>.

<noun_phrase> → <article> <noun>
<predicate> → <verb>

I - 5

Generating Well Formed
Sentences

Grammar rules so far:

<noun_phrase> → <article> <noun>
<predicate> → <verb>

<sentence> → <noun_phrase> <predicate>

To complete our simple grammar, we associate actual words
with the terms <article>, <noun>, and <verb>.

<article> → the
<noun> → student

<article> → a

<verb> → relaxes

<verb> → studies

I - 6

Context-Free Grammars

A context-free grammar G is a quadruple (V, Σ, R, S),
where

V is a finite set called variables,

Σ is a finite set, disjoint from V, called the terminals

R is a finite subset of V × (V ∪ Σ)* called rules, and

S (the start symbol) is an element of V.

For any A ∈ V and u ∈ (V ∪ Σ)*, we write A → u whenever
(A, u) ∈ R.

I - 7

The Language of a Grammar

If u, v, w ∈ (V ∪ Σ)* and A → w is a rule, then we say uAv
yields uwv and write uAv ⇒ uwv.

Write u ⇒ v (and read u derives v) if

u ⇒ u1 ⇒ u2 ⇒ ⋯ ⇒ uk ⇒ v.

The language of the grammar G is

L(G) = { w ∈ Σ* | S ⇒ w }.

*

*

I - 8

For Example

Consider G = (V, Σ, R, S), where

V = {S},

Σ = {a, b}, and

R = { S → aSa | bSb | aSb | bSa | ԑ }.

Is there a grammar whose language is

PAL = { w ∈ Σ* | w = reverse(w) }?

I - 9

Arithmetic Expressions & Parse
Trees

Consider G = (V, Σ, R, S), where

V = {<EXPR>, <TERM>, <FACTOR> },

Σ = { a, +, ×, (,) },

R = { <EXPR> → <EXPR> + <TERM> | <TERM>,
<TERM> → <TERM> × <FACTOR> | <FACTOR>,

<FACTOR> → (<EXPR>) | a },

S = <EXPR>.

I - 10

Arithmetic Expressions & Parse
Trees

Let’s do the parse tree for a+axa.

Let’s do the parse tree for (a+a)xa.

I - 11

Needlessly Complicated?

How about just

<EXPR> → <EXPR> + <EXPR> |
<EXPR> × <EXPR> |
(<EXPR>) |
a

A grammar G is ambiguous if some string w has two or more
different leftmost derivations.

I - 12

Regular Languages are Context-
Free

1. Make variable Ri for each state qi.
2. Add rule Ri -> aRj if there is a transition from qi to qj on symbol a
3. Add rule Ri -> ԑ if qi is an accept state
4. Make R0 the start variable

I - 13

Chomsky Normal Form

A context-free grammar G is in Chomsky normal form if
every rule is of the form

S → ԑ

A → BC
A → a

where A, B, C ∈ V, B ≠ S ≠ C, and a ∈ Σ.

I - 14

Chomsky Normal Form

Any context-free language is generated by a context-
free grammar in Chomsky normal form.

Theorem

Proof 1. Make sure S appears only on the left.
2. Remove empty rules: A → ԑ.
3. Handle unit rules: A → B.
4. Fix all the rest.

S → ASA | aA
A → b | ԑ

