Laboratory 11/Problem Set 9

Memory Hierarchy: Caches
Computer Science 240

This lab explores the implications of caches in memory system performance, starting with experiments that evaluate real programs on real hardware and then moving to simulations.

Caches are managed solely by hardware. They are hidden from programmers by the ISA’s abstraction that memory is simply a large array of bytes. While caches never change the meaning of a program (the result it computes), their impact on program performance can be observable and, in some cases, extreme.

This lab will:

1. Evaluate our earlier claim that two versions of a program that compute the same result and differ only in the order of two adjacent lines of code can have running time that differs by an order of magnitude.

2. Demonstrate that, while caches are semantically invisible to programs, their performance impact can be used to measure their dimensions.

Download and unzip cs240-cache-sleuth.zip from the Google group.  This folder contains a number of Java files.  
Use Dr. Java on the lab machines (do not use your own labtop) to open,compile, and run the programs.  Also, close all other programs while you are running your experiments (because other processes also use the cache, and can interfere with your results).
Part 1: Cache Experiments on Real Hardware

Exercise 1:  Examine methods experimentA and experimentB in CacheExperiment.java to make a hypothesis about performance.

1. Describe what experimentA and experimentB compute.

2. How do their implementations differ?

3. On a machine that uses caches with a least-recently-used (LRU) replacement policy in the memory hierarchy, which of A or B is likely to run faster in some cases? What principle is involved?

4. Make a hypothesis: How do the following factors affect the (relative) performance of A and B?

· The total cache capacity: C bytes

· The array size: S elements

· The number of repetitions: R
Exercise 2:  Partially evaluate your hypothesis via timing experiments to estimate the capacity of the cache in the machine you are using. In all experiments below, repeat each individual experiment 5 times and record all results to account at least partially for variability in timing. 

You will compile CacheExperiment once and run it several times for this step.

First, experiment with effects of array size.

1. Use a fixed number of repetitions and vary the size of the array in use.

a. Run CacheExperiment with size 500,000 elements and 1,000 repetitions.

b. Repeat the experiment above, increasing the array size by 100,000 each time until you reach 2,000,000.

2. On paper, plot the average time of A and B for each array size as a line chart.

3. One curve should exhibit a “knee,” a point in a curve where the slope changes 

noticeably compared to the slope on either side. Which curve contains a knee?

4. Do more experiments, varying size to find the most precise location of the knee that you can. Repeating your experiments to account for variability is important. You may find that you eventually reach a point where results become too variable to continue.

5. As you “zoom in,” is the knee angular? noisy? rounded?
Exercise 2:  Now, experiment with effects of repetitions.

1. Use a fixed array size and vary the number of repetitions.

2. Plot the average time of A and B for each array size as a line chart.

3. Measurements will get noisy as you approach 1 repetition.

· Run CacheExperiment with size 10,000,000 elements and 1,000 
repetitions.

· Repeat the experiment above with 500, 100, 50, and 10 repetitions.

· Answer the following:


a. Is there a knee in either curve?


b. How close are the running times of A and B at 10 repetitions?


c. What do you expect of the relative performance of A and B at 1 repetition? 
Why?


d. What are some reasons that the measures could get noisy approaching 1 
repetition?

e. Finally, estimate the cache size of the machine.  Use your hypothesis and 
the data you collected in these two series of experiments. Assume the cache 
uses a true LRU replacement policy and memory is byte-addressable. The 
cache size (in bytes) might not be a power of 2, but it is no more complicated 
than the sum of two powers of 2.

Part 2: An Automatic Cache Sleuth

In this part of the lab (which will continue as a problem set), you will use a cache simulator and attempt to automatically discover the dimensions of mystery caches based only on observations of hits and misses for a stream of memory accesses.

We provide several files that comprise the simulated caches, and a “cache sleuth:”

CacheSleuth.java - a template for a cache sleuth that you will implement to automatically discover dimensions of a simulated cache

CacheSim.java - an interface describing the visible functionality of the simulated cache
Cache64KB2Way16B.java, 
Cache32KB8Way8B.java, 
Cache16B4Way4B.java - three sample caches with known dimensions
MysteryCacheA.class, 
MysteryCacheB.class, 
MysteryCacheC.class - three mystery caches with unknown dimensions
 SampleCache.java  - a class you may extend to implement new caches for testing
CacheSimImpl.class, 
CacheSimImpl$Set.class,
CacheSimImpl$Slot.class  - a cache simulator implementation
Exercise 3. Implement the following  three methods in CacheSleuth:
 getLineSize(...) - determines the line size of the cache.
 getCapacity(...) - determines the capacity of the cache.
 getAssociatvity(...) - determines the associativity of the cache.

Each of these methods takes a simulated cache (a CacheSim) and will determine a dimension of that cache by issuing a series of memory accesses and inspecting whether they hit or miss in the cache.

Think carefully about how your experiments on real hardware unfolded in Part 1 and determine whether any patterns can be generalized and applied to the simulated caches given here.  Do some pencil + paper design and think through the sleuth problems abstractly before writing code.
Exercise 4. Use your CacheSleuth implementation to determine the dimensions of 

the given mystery caches (your CacheSleuth will be tested on additional mystery caches not provided to you).

Assume that:
· All caches use an LRU (least recently used) replacement policy.

· All caches start empty (cold).

Challenge Problem: A Cache Sleuth for Real Hardware

For an additional challenge, develop a program that can automatically discover at least one dimension of a real hardware cache in a real machine without human intervention, using only memory accesses and timing. Your techniques from Part 2 will be useful, but you will need to adapt them to work with the kinds of measurements available from real hardware caches as in Part 1 (where each access does not return hit/miss). You may use any programming language. 

Unlike other challenge problems, a modest amount of extra credit may be earned for this problem.
Submission

To submit your problem set, please share a folder on Google Drive with Ben containing CacheSleuth.java.  Be sure to upload the CacheSleuth.java file itself (do not paste it in a Google Doc).  
You may complete the problem set with your lab partner, or alone.  Include a comment in your file explaining how and why each of the sleuth methods work.

