
Operating System and Virtual Memory
Computer Science 240

Laboratory 12

In lecture, you have introduced to the idea of an operating system, system software that manages the resources
of a computer for multiple programs. Along with this, you are learning about how virtual memory can be used
to allow efficient and safe sharing of memory among multiple programs.

Machines have instructions for handling operating system tasks which are not accessible by the average user of
the system. These instructions are similar to the Mini-MIPS instructions we have learned about in the sense that
there is underlying circuitry in the processor which fetches, decodes, and executes the instructions to perform
whatever task is required. Therefore, to add an operating system, it is necessary to add instructions/hardware to
the basic data and control path of the machine.

Although it is beyond the scope of what we can accomplish in lab to completely implement virtual memory or
an operating system for our lab machine, today in lab you will experiement with a few circuits which should
enable you to understand the basic idea of how these techniques are implemented in hardware.

Operating System
A primitive operating system has been added to Mini-MIPS in os_datapath.cct, the third circuit from today’s
lab materials:

This circuit can execute an operating system loop and service 3 processes. Each process is allowed to execute
for 16 instructions before it is moved to the tail of the queue.

In order to reduce the complications of using virtual memory with Mini-MIPS, the os_datapath.cct separates
the existing 256 word memory into 4 quadrants, and assigns the operating system and each of the processes 64
addresses. The operating system always uses address 0 – 63, PID 1 uses 64 – 127, PID 2 uses 128 – 191, and
PID 3 uses 191 – 255. The appropriate section of memory is accessed by using the PID as the two most
significant bits of the address throughout the datapath.

The PC and the register file have been modified so that the state is saved in duplicate registers. The appropriate
devices are selected by the PID.

Three new instructions are needed for implementing a primitive operating system with Mini-MIPS: HALT,
DEQUEUE, and RTI. None of these instructions require operands.

HALT is actually a user instruction, but is an important addition to the basic instruction set, because it
allows a graceful exit from a program.

DEQUEUE accepts a new PID from the process queue into the processor and stores the PID at address 0
in data memory.

RTI transfers control of the processor (PC, registers, and memory) to the process, through use of the PID.

On the next page is a screenshot of the circuit. It looks quite similar to the Mini-MIPS single cycle
implementation. For simplicity, we simulate the PIDs rather than using a queue.

Operating
System

You may recall the 9 basic Mini-MIPS instructions:

Opcode Instruction Operands
0000 LW Rs Rt offset
0001 SW Rs Rt offset
0010 ADD Rs Rt Rd
0011 SUB Rs Rt Rd
0100 AND Rs Rt Rd
0101 OR Rs Rt Rd
0110 SLT Rs Rt Rd
0111 BEQ Rs Rt offset
1000 JMP 12-bit offset

It is important to note that JMP uses all 12 remaining bits as an offset to an absolute address, but since addresses
can be no larger than 256, the offset can not exceed 128, which can be expressed in 7 bits. That means the top 4
bits of the offset can never be non-zero. So, those bits can be used to encode the additional instructions.

The new instructions are also going to have an opcode of 1000, but the next 4 bits will be used to distinguish
JMP from the new instruction (much the way regular MIPs uses an extra field to specifiy certain operations).

1000 0000 JMP
1000 1000 DEQUEUE
1000 1100 RTI
1000 1111 HALT

One of the clever things about this scheme is that it leaves lots of room for other instructions to be added, as
well (since this is truly a minimal system; it would be nice to have I/O as well as the operating system
commands that would be necessary to handle the multi-user access).

 Also, choosing the JMP opcode for the new instructions does not require much modification of the data and
control paths, because the JMP instruction does not use the regular datapath.

Operating System Code
The operating system is a simple loop:

Addr Instruction
00 JMP 0 0 1 # loop actually starts at addr 2,
02 DEQUEUE # get current PID and stores in address 0 of data memory
04 LW R0 R2 0 # test PID to see if it is non-zero
06 BEQ R0 R2 0 # if 0, no processes in queue, keep looping until one shows up
08 RTI # transfer control of the processor to the process, using the PID
0A JMP 0 0 1 # repeat the loop when the process has executed for 16 clock cycles

Exercise 3: Open the os_datapath.cct file, and examine the underlying circuit of the OS_CPU device (there
should be tabs at the bottom which you can select for the sub-circuits; if not, you can double-click on the device
to open the sub-circuit in a separate window).

1. Find HALT, DEQUEUE, and RTI . Explain how those instructions are recognized in the hardware:
The highest 8 bits of the instruction are decoded to recognize the instruction (i.e. if the most significant bit is 1
and the next 4 bits are 1111, it is a HALT instruction). This can be accomplished with a simple AND gate.

2. Find PID1 and PID0, and take note of changes in the configuration of the PC and Regfile. What extra
inputs are there to the devices, and how do you think they are used? The regfile now takes as inputs two
select lines, which are derived from the PID. The select lines are used to choose a set of registers for use
with each process. Similarly, the PC takes the PID bits, in addition to DEQUEUE and RTI, in order to
select the PC value for the process being serviced.

3. The processes have the following code (these programs do not do anything useful, but they are different

from one another in number and type of instructions so that you can see different programs are running).

Process 1 Process 2 Process 3
Addr Instruction Addr Instruction Addr Instruction
40 5202 80 2114 C0 2146
42 5333 82 2448 C2 3448
44 5444 84 8000 C4 6018
46 5555 C6 7480
48 5555 C8 7111
4A 5555 CA 7220
4C 8000 CC 8000

4. Run the circuit; begin by setting RESET = 1 and back to 0. Set PID1 = 0 and PID0 = 1.

This initializes all the registers to 0, and you begin execution at address 0 (which is the first instruction
of the operating system). The PID is set to process 1.

You should see: Addr = 00 Data = 8001

5. Set CK to 1 and back to 1. Each time, observe the address and data. You should step through addresses

0 – 6, and then jump to address 40 as soon as the RTI at address 8 is sensed.

6. Execute 16 instructions of process 1 by toggling CK 16 times.

You should see the operating system resume execution at address A. Take note of the last address
executed for process 1 (you should return to this address next time you execute this process).

7. Set PID1 = 1 and PID0 = 0 (this sets the PID to process 2).

8. Repeat steps 5 and 6. You should see 16 instructions of process 2 execute, and then back to the
operating system.

9. Set PID 1 = 0 and PID0 = 1 again (back to process 1).

10. Repeat steps 5 and 6. Notice that you begin executing process 1 at the point where you stopped earlier
after 16 cycles.

11. This time back at the operating system, set PID1 = 1 and PID0 = 1 (process 3).

12. Repeat steps 5 and 6. Once again, you should see 16 instructions of process 3 execute, then back to the
operating system.

Process ID Queue
In order to handle multiple users, an operating system must have a strategy for accepting and scheduling
processes. One way to do this is to assign an ID or number to each process, and then maintain a queue of the
process IDs, so that the processes can be serviced in some order.

The circuit queue.cct which is part of the lab materials for today, allows up to three processes to be scheduled.

A process ID (PID) is a 2-bit value, which can by 00 (if operating system code is being executed), or 01,10, or
11 (to correspond to the three processes). The current PID (at the head of the queue) is displayed on the binary
probes to the right of the circuit. In the diagram, the current PID = 01, and is stored in the rightmost
pair/column of D flip-flops.

The PID of the next processes scheduled are stored in the other two pairs/columns of D flip-flops to the left.

When the current PID is dequeued, or passed to the processor, the next PID moves forward to take its place.
However, the current PID is also fed back in to the tail of the queue, so that it will have another turn to be
processed. The tail of the queue can get a new value from either a new PID (if there are fewer than 3 in the
queue), or from the current PID. If the queue is full, it will act as a circular shifter until one or more of the
processes halt (complete execution).

Exercise 2: Operate the circuit by doing the following:

1. Set CLR=1 and back to 0.

This corresponds to restarting the system, at which point the operating system has control. The 3 PIDs
are set to 0.

2. Set PID1 = 0 and PID0 = 1 (PID = 01).

The first PID in the queue will be 01.

3. Set NEW_PROCESS = 1 amd set CK to 1 and back to 0. Set NEW_PROCESS = 0
Examine the value at the outputs of the leftmost column of flip-flops to see the value of 01
NOTE: LogicWorks has a Show Values option in the Simulation Menu which should allow you to
observe values more easily.

4. Repeat steps 2 – 3 for PID 10 and 11.

5. You should now to able to observe the three values. If you continue to clock the circuit, you can see how
the values circulate from the head to the tail of the queue.

6. Set HALT = 1 and back to 0.

This simulates a process that has completed execution, and the current PID should be set to 0.

Clock the circuit several times. It is possible that the PID will show up again. If it does, you should set
HALT = 1 and back to 0 again. Continue to clock until the PID no longer shows up.

You can then do this for the other PIDs until the queue is empty and has all 0’s again. This corresponds to
the operating system sitting in the schedule loop and waiting for requests.

7. Examine the circuit and explain the purpose of the multiplexers and the extra set of D flip-flops which

feed the multiplexors. The next PID which goes to the tail of the queue is either a new process requesting
service, or the current process (which goes to the tail after being serviced). The MUX selects a new PID if
it is being applied, and stores the current PID for one cycle, so that the current PID will go to the tail of the
queue on the next cycle after the new PID has entered the queue.

8. This circuit uses a counter device:

 LD stands for Load, which means initialize the Q outputs to the values of the D inputs
 CLR means initialze the outputs Q0..7 to all 0’s
 EN stands for Enable, the device will not count/increment if EN is not active
 UP = 1 means increment the Q outputs each time the CLK is toggled.

Describe the purpose of the counter: The counter keeps track of how many processes are in the queue (0 – 3).
It decrements the counter if a process ends, and increments it when one is added.

Virtual Memory
Main memory in any computer is not large enough to hold all the programs at once that you (and other users)
might like to run at any given time. It is often necessary to bring programs in from other storage devices
(cache memory, hard drive, flash drive, etc.) into main memory when it is time to run a program.

Exercise 3: Open the file virtual_memory.cct that you received as part of the lab materials for today. This
circuit contains four memory devices. Three of the device can be thought of as the memories for three
processes (programs) which are being executed by a single Mini-MIPS processor. The fourth memory is the
main memory, which is the device which the processor will actually use during execution.

The circuit will select a memory device based on the process id, or PID (which can be 1, 2, or 3), and will copy
the contents of the device to the main memory, so that the process can be executed.

For simplicity, only 8 locations are copied from each device (although this could easily be extended to include
the entire address space).

The contents of the first 8 memory locations in the Processor 1 Memory is
Address Data
00 1111
01 1112
02 1113
03 1114
04 1115
05 1116
06 1117
07 1118

To copy this data to the main memory, do the following:

1. Set PID to 01
2. Click on the Copy switch (it is a pushbutton switch, so click once to toggle high then low)
3. For each address, click CK (also a pushbutton switch) to copy the contents of the current address in the

processor memory to the main memory. This also advances the address to the next location.

When the 8 address locations have been copied, the address will return to the starting location of 00, and
continuing to click CK will have no effect (the circuit can detect when all 8 locations have been copied).

Repeat the process for Processor 2 and Processor 3, and record the contents of the devices in the table below:

Processor 2 Memory Processor 3 Memory
Address Data Address Data
00 2262 00 3330
01 2272 01 3334
02 2282 02 3338
03 2292 03 333C
04 22A2 04 3331
05 22B2 05 3335
06 22C2 06 3339
07 22D2 07 333D

Examine the circuit and answer the following questions:

1. What are the multiplexors used for? How is the decoder involved in that operation?
The multiplexers select 1 of the 3 memories to copy to the main memory. The output of the decoder, which has
one active line for each of the PIDs, is used as the select inputs to the multiplexers.

2. The devices on the left labeled DEV1 and DEV2 are a counter and a d flip-flop. Describe the purpose of
these devices in terms of how they are connected and what they are used for in the circuit.

The counter produces the addresses 0 – 7, incrementing by one on each CK cycle to copy a word to the main
memory. When the address reaches 8, the flip-flop gets set to 1, which disables the counter because the copy of
the block of 8 words is complete at that point.

