
 1

Laboratory 2
More on MIPS

Computer Science 240

MIPS Review

Debugging
Exercise 1 – 1: Download the lab2-1.asm file from the Lab Google Group. It contains a program that should
output:

 The code is: 8

Now it is: 9

If you have not selected the checkbox to Show Line Numbers in the Edit window, you will want to select that
option to assist you in debugging.

Try to assemble, and examine the error messages listed.

Once you have corrected the syntax errors using the error messages, and can assemble the program, try to run it.

2. Describe and explain the run-time errors that occur.
Runtime exception: fetch address not aligned on word boundary 0x00000001

This error occurred because of the instruction ‘lw $t0,1”

You cannot load a word from the address 1 because it is not on a word boundary. This is also an illegal address
because it is in the reserved area of memory, which the programmer is not allowed to use.

The instruction should be “li $t0,1”

Partners: Jean Herbst - solution

 2

3. Modify the program to get the expected output. Add comments to the corrected program. Copy the code from
MARS and paste it here:

lab2-1.asm
Debugging and Review Exercise
 .text
 .globl main

main: li $v0,4 # print the first string
 la $a0,prompt1
 syscall

 li $v0,1 # print the 8 (from memory)
 lb $a0,val
 syscall

 move $s0,$a0 # save the value of 8 in $s0

 li $t0,1
 add $s0,$t0,$s0 # add 1 to 8 to get 9

 li $v0,4 # print the second string
 la $a0,prompt2
 syscall

 li $v0,1 # print the 9
 move $a0,$s0
 syscall

 li $v0,10
 syscall

 .data
prompt1: .asciiz "The code is: " # had to change .ascii to .asciiz so strings didn’t run together

prompt2: .asciiz "\nNow it is: "

val: .byte 08

 3
 Storage allocation and program execution
Exercise 2 - 1. Predict the address and data contents of the following data segment from lecture .

 .data
str: .byte 1,2,3,4
 .half 5,6,7,8
 .word 9,10,11,12
 .space 5
 .word 9,10,11,12
letters: .asciiz “ABCD”
 .ascii “ABCD”
 .byte -1

• Use little-endian byte order
• Show one word (4 bytes) per row.
• Lowest address (0x10010000) should be at

bottom of stack.
• Label the addresses corresponding to str and

letters
• Use hexadecimal notation

Address Label
0x1001003C
0x10010038
0x10010034 letters
0x10010030
0x1001002C
0x10010028
0x10010024
0x10010020
0x1001001C
0x10010018
0x10010014
0x10010010
0x1001000C
0x10010008
0x10010004
0x10010000 str

Data
00 00 FF 44
43 42 41 00
44 43 42 41/5A
00 00 00 0C
00 00 00 0B
00 00 00 0A
00 00 00 09
00 00 00 00
00 00 00 00
00 00 00 0C
00 00 00 0B
00 00 00 0A
00 00 00 09
00 08 00 07
00 06 00 05
04 03 02 01

2. Predict how the values of $a0 and $t0 change as each instruction is executed, and answer the stated questions:

 $t0 $a0
 0x00000000 0x00000000

main: li $v0,11
 li $t0,2 0x00000002
 lb $a0,letters($t0) 0x00000043
 syscall

What is the result of the syscall? Prints a “C”

 addi $a0,$a0,-1 0x00000042
 syscall

What is the result of the syscall? Prints a “B”

 addi $t0,$t0,1 0x00000003
 lb $a0,letters($t0) 0x00000044
 syscall

What is the result of the syscall? Prints a “D”

 li $t0,’Z’ 0x0000005A
 sb $t0,letters
 lb $a0,letters 0x0000005A
 syscall

What is the result of the syscall? Prints a “Z”

Update the memory diagram above to show what happens after the sb $t0,letters is executed.
The byte 41 becomes 5A at address represented by letters

3. Download lab2-2.asm from the Lab Google Group and single-step the program to verify your results.
Examine the Data Segment to check that your storage allocation diagram is correct.

 4

Exercise 3: Write a MIPS program which does the same thing as the following Java statements.

//initialize only these two strings in memory
String phrase = “Change: inevitable”;
String addon = “ except from vending machines”;

//should output the string ‘Change: inevitable’
System.out.println(phrase);

//should output ‘Change: inevitable except from vending machines’ with a single syscall
phrase = phrase.concat(addon);
System.out.println(phrase);

//should output ‘Charge!’
phrase = phrase.replace(‘:’,’!’);
phrase = phrase.substring(0,7)
phrase = phrase.replace(‘n’,’r’);
System.out.println(phrase);

Copy the code from MARS and paste it here:

Written by: Jean Herbst
CS 240 lab 2 exercise 3 this program does some character replacements to change how the strings are printed
 .text
 .globl main

main: # print the initial phrase
 li $v0,4
 la $a0,phrase
 syscall

 # print a line feed character
 li $v0,11
 li $a0,'\n'
 syscall

 # replace the null byte at the end of the first phrase (which is offset 18 from the beginning of the string)
 # with a space so the two strings prompt and addon will become one longer string
 la $s0,phrase
 li $t0,' '
 sb $t0,18($s0)

 # print the concatenated phrase + addon
 li $v0,4
 la $a0,phrase
 syscall

 # print a line feed character
 li $v0,11
 li $a0,'\n'
 syscall

 5
 li $t0,'r'
 sb $t0,3($s0) #replace the 'n' with an 'r' in 'Change' to make it 'Charge'

 li $t0,'!'
 sb $t0,6($s0) #replace the ':' with a "!"

 li $t0,0
 sb $t0,7($s0) #put a null after 'Charge!' to terminate the string

 # print 'Charge!'
 li $v0,4
 la $a0,phrase
 syscall

 #halt program
 li $v0,10 #sys code for exit must be in $v0
 syscall

 .data
initialize only these two strings in memory
phrase: .asciiz "Change: inevitable"
addon: .asciiz "except from vending machines"

 6
 Numeric representation

Exercise 4: On paper, perform addition on the following binary and hexadecimal numbers (assume two’s
complement format!). Indicate whether there is a carry-out or an overflow for each addition.

 Hex Binary Hex Binary

0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

1. For the first 2 calculations, assume 16- bit representation. Do the calculation using the binary values.

Then, convert the numbers for the operands and result to hexadecimal notation (to convert, divide the digits into
groups of 4, and translate each group to the corresponding hexadecimal value).

 Carry-Out? Overflow?_ Hexadecimal Value

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0xFFFF
+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0xFFFF
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 yes no 0xFFFE

 Carry-Out? Overflow?_ Hexadecimal Value

 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0xFFFF
+0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0xFFFF
 yes no 0xFFFE

2. Now, assume 32-bit representation. The numbers are given are in hexadecimal notion.

 Carry-Out? Overflow?_

 0x A A F F 9 0 1 4
+0x A A E 3 C D 1 2
 1 5 5 E 3 5 D 2 6 yes yes

 Carry-Out? Overflow?_

 0x 7 F A A 3 2 7 8
+0x 6 0 2 4 C D 1 2
 D F C E F F 8 A no yes

 7
3. Use MARS to write a very simple program that adds the contents of $t0 and $t1, and puts the result in $t2:

 .text
 .globl main
main: add $t2,$t0,$t1 # add contents of $t0 and $t1, and store result in $t2

 li $v0,10 # terminate execution
 syscall

After assembling the program (but before executing), enter the values for $t0 and $t1 directly into the Registers
panel. Use the 32-bit hexadecimal values from the previous exercise:

 0x A A F F 9 0 1 4
 + 0x A A E 3 C D 1 2

Execute the program. Describe what happens:

 There is a run-time error because of arithmetic overflow displayed in the console, and the rightmost pane in
MARS displays the status register showing that the overflow bit is set.

