
Assignment for Laboratory 9

Computer Science 240

Due: Before lab (hand in only the first page)

You will be spending the next two labs implementing and experimenting with the mini-MIPS
machine we learned about at the beginning of the semester. This machine is very similar to
the single-cycle MIPS machine that you will be studying in lecture. After reading the
specification for the simple architecture described on the following pages, answer these
questions:

1. How many instructions are there in the instruction set?
9 instructions

2. How many bits are there in each instruction?
16 bits

3. What instruction is represented by the hexadecimal value 0x0101? (each digit represents
4 bits)
LW R0,1(R1) load word from address 2 (R1 + offset of 1) to R0

 this would not work because you cannot load a value to R0 (it has a constant value = 0)

4. What is the 16-bit binary form of the following instruction (don’t forget that the order or
operands is different in mini-MIPS than in MIPS):

ADD R1 R1 R4
0010 0001 0001 0100

What are the contents of Register 1 and Register 4 after this instruction is executed?
R1 = 1 (always has a constant value of 1), R4 = 2

5. Given the following instruction at address 8 in memory:

 8: BEQ R5 R6 C

Assume register 5 contains FFFE, and register 6 contains FFFE.

After this instruction is executed, what will be the address of the next instruction?
C is a negative 4-bit value 1100, which is -4.

PC = PC + 2 + (2 * offset), so PC = 8 + 2 -8 = 2

6. Repeat question 5, but assume that the original value of register 5 = 0003, and register 6
= 0002. What will be the address of the next instruction?
PC = 8 + 2 = A

Descript ion of Mini -MIPS Architecture

 The device you will design is a simple RISC-style CPU. As is traditional in a RISC architecture,
a small number of highly efficient instructions and addressing modes will be defined.

The word length for this device is 16 bits. The CPU reads and writes words, and addresses in
instruction and data memory may begin at even or odd addresses.

The starting address of every program must be address 0, since the program counter is
initialized to 0 by a reset.

Because instructions are 16 bits in length, the program counter must be incremented by 2 to
move to the next instruction.

There are 16 registers available, 14 general-purpose registers (R2-R15) and 2 constant
value registers (R0-R1). The R0 register always contains 0 and the R1 register always
contains 1. Neither R0 nor R1 can be modified by any instruction.

Instructions specify register IDs using 4-bit values. The program counter is an 8-bit register,
but it cannot be directly accessed by any instruction.

Your CPU will implement the following instruction set (all instructions are one word in
length):

Instruction Meaning Op Rs Rt Rd
 4-bit 4-bit 4-bit 4-bit
LW Rt,offset(Rs) Rt loaded with word from

Data Memory at
address(Rs + offset)

 0000 0-15 0-15 offset

SW Rt,offset(Rs) Data Memory

address(Rs + offset)
stored with word from
Rt

0001 0-15 0-15 offset
ADD Rs,Rt,Rd Rd := Rs + Rt 0010 0-15 0-15 0-15
SUB Rs,Rt,Rd Rd := Rs - Rt 0011 0-15 0-15 0-15
AND Rs,Rt,Rd Rd := Rs AND Rt 0100 0-15 0-15 0-15
OR Rs,Rt,Rd Rd := Rs OR Rt 0101 0-15 0-15 0-15
SLT Rs,Rt,Rd If Rs<Rt then

 Rd:=1
 else 0110 0-15 0-15 0-15
 Rd := 0
BEQ Rs,Rt,offset If Rs=Rt then
 pc:=pc+2+(offset*2) 0111 0-15 0-15 offset
 else
 pc:=pc+2
JMP offset Jump to abs. addr =
 offset*2 1000 ---12 bit offset-----

The high four bits always specify the operation while the low 12 bits specify registers and
offsets, depending on the instruction type.

Mathematical operations (ADD, SUB, AND, OR, SLT) operate only on registers.

 Data transfer and branching operations (LW, SW, BEQ) operate on two registers and an
absolute offset value.

The jump operation (JMP) operates on a single 12-bit offset.

Mathematical and logical operations treat the low 12 bits as register identifiers. The high
four bits represent Ra, the middle four Rt and the low four Rd as specified in the previous
table.

Addition, subtraction and set-greater-than treat the contents of Rs and Rt as 16 bit, two’s
complement numbers. Logical operations (AND,OR) treat Rs, Rt and Rd as unsigned, 16 bit
values.

Load and store operations use the low 12 bits to specify memory address,
source/destination register and offset respectively. Rs specifies the register containing a
base address. Rd specifies the offset and Rt specifies the destination (or source) for data
being read (or stored). Note that the only addressing mode is register indirect.

The branch equal (BEQ) operator uses the low 12 bits to specify the registers for comparison
and the branch offset. Rs and Rt specify registers whose values are to be compared. If they
are equal, the program counter is incremented by 2, and then incremented by (2 * offset).

Offsets for loading, storing and branching are 4 bit, 2’s complement numbers that specify
offsets as words. Be cautious as you add and subtract offsets to get new program counter
values. The length of the offset limits how far a program can branch using the BEQ command.

The jump operation uses the low 12 bits to specify a single offset value (this value should be
in the range of 0 to 127, to guarantee a legal address within the range of 0 to 254. Unlike
the branch offset, the jump offset is not interpreted as a 2’s complement number. An 8-bit
absolute address is formed by multiplying the offset value by 2 (shift left). The JMP operation
is achieved by setting the program counter to this address.

