
1 

CS240 Computer Organization 
Department of Computer Science 
Wellesley College 

Virtual memory 
A new level of cache 

Virtual memory 24-2 

Crowded memory 
o  Total memory required by 

a collection of programs 
running at once on a 
computer may be larger 
than main memory. 

o  However, only a fraction 
of this memory is actively 
used at any given moment. 

o  Virtual memory allows 
programs to share memory 
by using main memory as a 
cache for secondary 
storage.   

Virtual memory 24-3 

User protection 
o  Each program is compiled 

into its own private 
address space, a separate 
range of memory 
accessible to only this 
program.   

o  Virtual memory translates 
the program’s address 
space into physical 
addresses. 

o  It also enforces 
protection of a program’s 
address space from other 
programs. 

Virtual memory 24-4 

No room at the Inn 
o  In the late 1950s the 

leading scientific 
computer, the IBM 650, 
had only 2000 words of 
memory.  Memory was 
precious. 

o  Programmers spent spent 
a lot of time trying to 
squeeze programs into 
tiny memory 

o  Fortunately, the entire 
program need not be in 
memory throughout its 
execution. 



2 

Virtual memory 24-5 

Overlays 
o  A technique called overlays was used to allow a program to 

be larger than the amount of memory allocated to it. 

Symbol table 14K 

5K 

2K 

Common routines 

Overlay driver 
Pass 1 Pass 2 10K 8K 

Virtual memory 24-6 

Problems with overlays 
o  The programmer was responsible for breaking her program into 

pieces, deciding where in secondary memory each piece goes . . . 

o  . . . and arranging for the transport between main memory and 
secondary storage. 

Address space 

4K main memory 

0 
4096 
8191 

12287 

4095 
0 

Current mapping 

Virtual memory 24-7 

o  In 1961 a group at Manchester, England proposed a method for 
performing the overlay process automatically.  

o  A jump from location 5012 to location 9140 causes an automatic page 
fault.  The operating system is called without the programmer being 
aware. 

Virtual memory 

Address space 

4K main memory 

0 
4096 
8191 

12287 

4095 
0 

Current mapping 

Virtual memory 24-8 

Virtual memory in action 

Address space 

4K main memory 

0 
4096 
8191 

12287 
4095 

0 
Current mapping 

1. Contents of main memory 
would be saved on disk. 

2. Words 8192-12287 would be 
loaded into main memory. 

3. Address map would be 
updated as shown 

4. Program execution resumes 
as though nothing happened. 



3 

Virtual memory 24-9 

Virtual memory 
o  Virtual address space is 

broken into a number of 
equal sized pages. 

o  Memory is broken into the 
same size chunks known as 
page frames. 

o  Some pages in virtual 
memory are in physical 
memory, some are on disk. 

o  A virtual memory miss is 
called a page fault. 

Virtual addresses Physical addresses
Address translation

Disk addresses

Virtual memory 24-10 

Mapping from virtual to physical address 

Virtual page number Page offset

31 30 29 28 27 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

29 28 27 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Physical address

Translation

o  The address is broken into 
a virtual page number and 
a page offset. 

o  The page size in this 
example is 212 = 4 KB.  

o  The size of physical pages 
is 1 GB, while virtual 
memory is 4 GB.  Why?  

Virtual memory 24-11 

Page tables 

Page table
Physical page or

disk address
Physical memory

Virtual page
number

Disk storage

1
1
1
1
0
1
1

1
1

1

0

0

Valid

o  Each program has its own 
page table that resides in 
memory. 

o  The page table is indexed 
with the virtual page 
number and points to the 
actual page in physical 
memory (either main 
memory or backing store). 

Virtual memory 24-12 

Page table register points to page table 

Virtual page number Page offset

3 1  3 0  2 9  2 8  2 7 3  2  1  01 5  1 4  1 3  1 2  11  1 0  9  8

Physical page number Page offset

2 9  2 8  2 7 3  2  1  01 5  1 4  1 3  1 2  11  1 0  9  8

Virtual address

Physical address

Page table register

Physical page numberValid

Page table

If 0 then page is not
present in memory

20 12

18



4 

Virtual memory 24-13 

Page faults 

 
Virtual memory 24-14 

Page replacement algorithms* 

*When physical memory fills up and a page fault occurs, somebody’s got to go. 

 

Virtual memory 24-15 

FIFO* 
o  When a page must be replaced, the oldest page in memory 

sleeps with the fishes. 

 

*This is the simplest, but requires some form of time stamp. 

Virtual memory 24-16 

Belady’s anomaly 
o  FIFO’s performance 

isn’t always optimal. 

o  It also suffers from an 
odd little anomaly.  
Consider the reference 
string: 1, 2, 3, 4, 1, 2, 5, 1, 
2, 3, 4, 5. 

 



5 

Virtual memory 24-17 

Optimal replacement 
o  Replace the page which will not be used for the longest 

period of time. 

*Unfortunately, the optimal page replace algorithm is difficult to 
implement since it requires predicting the future. 

 

Virtual memory 24-18 

Least recently used* 
o  Replace the page that has not been used for the longest 

period of time. 

*We try to predict the future, by observing the past. 

 

Virtual memory 24-19 

Reference bits 
o  Implementing an accurate 

LRU is too expensive, 
since it requires updating 
a data structure  on every 
memory reference. 

o  Most systems provide a 
use or reference bit, 
which is set whenever a 
page is accessed. 

o  The OS periodically clears 
the reference bits, so it 
can determine which pages 
have been touched during 
a time period. 

Virtual memory 24-20 

What about writes? 
o  Writes back to the disk 

take millions of processor 
cycles, so building a write 
buffer is not practical. 

o  Instead, virtual memory 
systems must use write-
back, copying the page 
back to disk when it is 
replaced. 



6 

Virtual memory 24-21 

The translation-lookaside buffer* 

1
1
1
1
0
1
1

1
1

1

0

0

1
0
0
0
0
0
0

1
1

1

0

0

1
0
0
1
0
1
1

1
1

1

0

0

Physical page
or disk addressValid Dirty Ref

Page table

Physical memory

Virtual page
number

Disk storage

1
1
1
1
0
1

0
1
1
0
0
0

1
1
1
1
0
1

Physical page
addressValid Dirty Ref

TLB

Tag

*Typical values:  16-512 entries; miss-rate = .01% - 1%; miss-penalty = 10 – 100 cycles. 

Virtual memory 24-22 

Intrinsity  
   FastMATH TLB 

=

=

20

Virtual page number Page offset

31   30   29 3   2   1   014   13   12   11   10   9

Virtual address

TagValid Dirty

TLB

Physical page number

TagValid

TLB hit

Cache hit

Data

Data

Byte
offset

=
=
=
=
=

Physical page number Page offset

Physical address tag Cache index

12

20

Block
offset

Physical address

18

32

8 4 2

12
8

Cache

Virtual memory 24-23 

TBL hit parade 

YesWrite access
bit on?

No

Yes
Cache hit?

No

Write data into cache,
update the dirty bit, and

put the data and the
address into the write buffer

Yes
TLB hit?

Virtual address

TLB access

Try to read data
from cache

No

Yes
Write?

No

Cache miss stall
while read block

Deliver data
to the CPU

Write protection
exception

Yes
Cache hit?

No

Try to write data
to cache

Cache miss stall
while read block

TLB miss
exception

Physical address

Virtual memory 24-24 

Raining on our parade 
o  When a TLB miss occurs, 

MIPS hardware saves the 
page number in a special 
register and generates an 
exception. 

o  The OS handles the miss in 
software by indexing the 
page table through the page 
table register. 

o  The system places the 
physical address from the 
page table into the TBL.* 

*Takes about 13 clock cycles, assuming the code and page table entry are in the 
instruction and data cache respectively. 



7 

Virtual memory 24-25 

Thrashing 
o  If the working set is larger than the number of available 

page frames, no algorithm short of OPT will give good results. 

*Assume a LRU algorithm. 

 


