Laboratory 5
Processor Datapath

Description of Mini-MIPS Architecture

16 bit data bus

8 bit address bus

Starting address of every program =0 (PC initialized to O by a reset to begin execution)
PC incremented by 2 to move to the next instruction.

16 registers

RO = 0 (constant)

R1 =1 (constant)
R2-R15 general purpose

Instruction Set

Instruction Meaning Op Rs Rt Rd
4-bit 4-bit 4-bit 4-bit
LW Rs Rt offset Rt loaded with word from

Data Memory at
address(Rs + offset)
0000 0-15 0-15 offset

SW Rs Rt offset Data Memory
address(Rs + offset)
stored with word from

Rt
0001 0-15 0-15 offset

ADD Rs,Rt,Rd Rd :=Rs + Rt 0010 0-15 0-15 0-15
SUB Rs,Rt,Rd Rd :=Rs - Rt 0011 0-15 0-15 O0-15
AND Rs,Rt,Rd Rd := Rs AND Rt 0100 0-15 0-15 0-15
OR Rs,Rt,Rd Rd :=Rs OR Rt 0101 0-15 0-15 O0-15
SLT Rs,Rt,Rd If Rs<Rt then

Rd:=1

else 0110 0-15 0-15 0-15

Rd:=0
BEQ Rs,Rt,offset If Rs=Rt then

pc:=pc+2+(offset*2) 0111 0-15 0-15 offset

else

pc:=pc+2
JMP offset Jump to abs. addr =

offset*2 1000 ---12 bit offset-----

Instruction Fetch

2 — =
8| | fead
| PC I/ address
16
insinaction ——s
‘ ‘ Insdruction
CLK RESET memory

Branch Address

Either PC +2 or PC + 2 + (2*%offset) is the next value of the PC.

8 —
f A - + |0
J 8 \8
| . Add | q i MUX
| g
1 2 = ' y Add et
| Ve -~ 8 Lr
—PpC 7% adress | “en1TST an
instruction L , 4 g
| e Sign
—_—] | O | ‘ ’
TT Instruction . offset ™ Branch Zero
CLK RESET memory |

On a BEQ instruction, BEQ Rs,Rt,offset

* The offset = number of instructions away from the next value of the PC to branch
to, so must be multiplied by 2.

* Since offset is 4 bits, it must be sign-extended to 8 bits to be added to the PC.

A 2x8 multiplexer circuit to selects the next value of the PC. The value of the Branch and
Zero bits are used to determine which is used:

* The Branch control line = 1 if a BEQ instruction is being executed.
* The Zero bit from the ALU is used to check whether Rs =Rt: itis 1 if Rs — Rt =

0 (meaning they’re equal). If Branch = 1 and Zero = 1, then the next value of the
PC will be the branch address ; otherwise, it will simply be PC + 2:

Register File and ALU
REGWRITE

Y

- 4 Read
Rs =" register 1
g Read
. h Read data 1 16
Rt 0 register 2
4 Reqgfile
Write
register 16
Read o
16 Wit data 2 [16
Rd lr..- rite
Data ux—
TT P —1
N | 16
CLK RESET . Sign]
ffset o
° ALUSre¢
S

R-type instructions ADD,SUB,AND,OR,SLT (opcode Rs Rt Rd)
— read Rs and Rt from register file
— perform an ALU operation on the contents of the registers
— write the result to register Rd in register file

Memory Access instructions LW ,SW (opcode Rs Rt offset)
— memory address = Rs + sign-extended 4-bit offset
— if SW, the value to be stored to memory is from Rt.
— if LW, Rt is loaded with the value read from memory

Register written to (Write Register) is Rd or Rt if a LW instruction (chosen by
a 2x4 MUX which is controlled by RegDst)

ALU calculates Rs + Rt, or Rs + sign-extended offset.
- Input A of the ALU is always Rs

- Input B of the ALU is Rt or the offset (chosen by a 2x16 multiplexer,
which is controlled by ALUSrc):

Data Memory

We need an additional memory for values loaded or stored (LW or SW) during execution of

the program (the instruction memory is only used to store program instructions).
EELW K E

i

. -4 Read
" | register 1 Read ALUop
4 data 1 16 -.\i
4 —"“l-.ll—h. F!.EEI.-d) -
Rt 'l register 7 e S HMem's'r ite
FegTile .
Wiriie LBID : MemtaReg
s register Read | 1% >AL1.I ALULS B - et 16
4 16 Wi data 2 - \E result e [T,
Bd 11 e L - Data Memory |
Dala LIH_."‘_"" ,__pf'f “ﬁ 4
-~ 16 Diata
| At e
RegDst ~, AP 16, | -
CLE RESET 4 16 1
aee SO0 | | | MemRead
offset = ALUErc
T

RegDst (chooses whether Rd or Rt goes to the Write data input on the Regfile)
If 0, destination is Rd. If 1, destination is Rt.

RegWr (control line to RegFile)
If 1, writes the value on the Write data input to the register specified by Write register

ALUSrc (chooses the source of the second ALU operand)
If 0, the operand is the second register file output.
If 1, the operand is the sign-extended, lowest 4 bits of the instruction.

MemRd (control signal to data memory)
If 0, value stored at address in data memory is read from Read data.

MemWr (control signal to data memory)
If 0, data memory address written with value from Rt on the Write data input.

MemtoReg (chooses the value to be written back to the Regfile)
If 0, the value comes from the ALU (R-type instruction)

If 1, the value comes from data memory (LW)

ALUop(4 bits) ALU function

0 aAND Db

1 aORbD

2 a+ b (add)

6 a-b

7 set on less than

Control Logic for the ALU
ALU can perform 5 possible operations:

ALUop ALU function
0 aAND D
1 aORDb

2 a+ b (add)
6
7

a-b
set on less than

Need an ALU Control Unit to select the proper operation for each instruction:

Instruction Opcode ALU operation ALUop

LW 0 add 2

SW 1 add 2

ADD 2 add 2

SUB 3 sub 6

AND 4 and 0

OR 5 or 1

SLT 6 slt 7

BEQ 7 sub 6

JMP 8 don’t care don’t care
Op3 Op2 Opl Opo ALUop3 ALUop2 ALUopl ALUop0
0 0O O 0 0 0 1 0
0 0O O 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 1 1 0 1 1 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 1 1 1
0 1 1 1 0 1 1 0

Use a 3x8 decoder to produce the ALUop

Control Unit

Must provide control signals for all other devices in datapath (MUXs, Regfile, Data Memory)

Instruction Opcode RegDst RegWr ALUSr¢ MemRd MemWr MemtoReg

LW 0000 1 1 1 0 1 1
SW 0001 1 0 1 1 0 0
ADD 0010 0 1 0 1 1 0
SUB 0011 0 1 0 1 1 0
AND 0100 0 1 0 1 1 0
OR 0101 0 1 0 1 1 0
SLT 0110 0 1 0 1 1 0
BEQ 0111 0 0 0 1 1 0
JIMP 1000 0 0 0 1 1 0

Can produce with logic gates or a 4x16 decoder (two 3x8 decoders)

Programming the Single-Cycle CPU

Mini-MIPS program which loops repeatedly to access memory:

Address Instruction Meaning

0: 5002 OR RO RO R2 #R2 gets 0

2: 5003 OR RO RO R3 #R3 gets 0

4 1220 SWR2R20 #address n: gets n (start of loop!)
6: 0230 LW R2R30 #R3 gets n

8: 2122 ADDRI1 R2R2 #R2 getsR2 +1

A: 8002

JUMP 002 #jump to 2*2 (address 4) = beginning of loop

Full Implementation

LosD L
Pazd Ciatm |
ACIE
wn L e]| [F1.1 [F1.] ['].
oI
"
o poig | D8 ORI BEXOOZSRESSATANTES
Qi Daia L it T Ay
111} il) D13 o
va o Dol T -
o DD A il Pt
on Deer = % L
o o — o AL
oo oo o e AU
oL Do D AU
o 5 B z s
oy | o3) D 0% A
"R = A B0 B e
o Ak |os |od P pon L e
COET D+ | o4 =4 Al P
i He—im |] &l L] A
BreTi—im g A o~ A
AL 3 T # 4 M
M) EI e me i} " R E A
N 1
1l y i a nTAs—o —
i A e R
EESET L= 3 ol 0T T e o O O
i‘ %
. " "
cwe | fo— %ﬂ o]] Lol] 1'| |
)
—] 3 Fad Data 2
= T]

Procedure to Load/Execute a New Program

1. Disconnect the address bus of the Instruction Memory from the CPU

2. Set LOAD =0

o

Set LOAD =1

7. Reconnect address bus to CPU

oo

Set Reset = 1, then back to 0

Set address and data switches for instruction
. Set WR =0, then back to 1
. Repeat steps 3 and 4 until all instructions are loaded to memory

9. Set CLK =1, then back to 0, for each instruction.

