Modern Digital Computer (from the outside)

“von Neumann” model

HW-
? controlled instructions
¢ — data
SW-
Proceéssor controlled Memory

How does a program
find its data in memory?

Byte-Addressable Memory

Words in Memory

32-bit Bytes Address
Address of word Words 0xOF
= address of 1% byte in word O0XOF
0x0D
Alignment 0x0C
. 0x0B
Data of size n bytes stored at a Ox0A
onlyifa modn=0 0x09
n is a power of 2 0x08
Recommended (x86), or required (MIPS) 0x07
depending on platform. 0x06
Why? 0x05
0x04
0x03
Byte ordering: what is the "1*" byte in a word: 0x02
0x01
0x00

high
Memory = array of byte locations, OxFReeeF]
unique address = index. ||
Read/Write gl [
&
Programs refer to bytes in memory by their addresses. g .
3| |.
Address =word .
Address space = range of possible addresses ||
0x00eee0 :

low

Endianness:
byte order within memory words
most least
significant byte significant byte

word in positional hexadecimal notation

3130 29 28 2726 2524 2322 2120 191817 1615 1413 1211 10987 6 5 4 3 2 1

| 2A [B6 00 [08B

Little Exnd

Big End

Bit order within bytes is always the same.

10/6/15

little endian (we will use this)

most least
significant byte . - . . significant byte
€ v word in positional hexadecimal notation

3130 29 28 27 26 2524 2322 2120 191817 1615 1413 1211 10987 6 5 4 3 2

1

0

l 2A ‘ B6 00 ‘ 0B

|

Little-endian\memory laybut. thtle end first:
Contents
2A
B6
00

0B

ost significant byte at highest address.
Position increases as address increases.

Least significant byte at lowest address.
used by x86

blg endian (we will not use this)

most least
significant byte . - . . significant byte
€ v word in positional hexadecimal notation

3130 29 28 27 26 2524 2322 2120 191817 16 15 1413 121110987 6 5 4 3 2 1 0
l 2A ‘ B6 00 ‘ 0B ‘

Big-endNan memony layout.

Big end first:

Contgnts
Least significant byte at highest address.

0B

. . 00
Position decreases as address increases.

B6

Most significant byte at lowest address. 2A

used by networks, PowerPC, MIPS, Sparc

Little Endianness in Machine Code

Disassembly

Take binary machine code and generate an assembly code version.
Instruction as stored in memory

Shows byte encoding of instruction asstored inmemory,

with byte in lower addresson left andbytein higher address on right.

encodes: add constant
to register ebx
(temporarystoragein CPU)

Address Instruction Code
8048366: 81 c3a
6 A DO 2P0
u%%buq’%b@%@@q’bu#b&*’%b
R

encodes constant to add (0x000012ab) | assembly version
in little endian order omits leading zeros

When does endianness matter?

Mostly invisible most of the time.

Matters only when inspecting memory byte-by-byte.
For now: endianness matters ONLY IN MEMORY.
Memory stores bytes, so must define how to split larger values into bytes.

Italso matters on the network or in files.

Byte order within word is always natural within the processor.
Processor manipulates entire words, soneed to split them up.

Bit order within bytes is always natural.

10/6/15

Addresses and Pointers

address = number of location in memory
pointer = data object that holds an address

The value 240 is stored at address 0x20.

240, = F0y5 = 0x00 00 00 FO memory drawn as words

A pointer stored at address 0x08 ox24
points to address 0x20. 00 (00 00 (FO | 0x20
. . 0x1C
A pointer to apointer ox18
is stored at address 0x00. ox14
The value 12 is stored 00 00 ;00 ;0C | Ox10
at address 0x10. 0x0C
st inter? 00 100 100 120 | 0x08
S It a pointerr 0x04
Are any of these values pointers? 00 ;00 , 00 ;08 | Ox00

» A2 TN

S

Data Representations

Sizes of data types (in bytes)

Java Data Type C DataType 32-bit word 64-bit word
boolean bool 1 1
byte char 1 1
char 2 2
short short int 2 2
int int 4 4
float float 4 4

long int 4 8
double double 8 8
long long long 8 8
long double 8 16
(reference) (pointer) * 4 8

address size = word size

& = ‘address of
* = ‘contents at address

Addresses and Pointersin C or ‘dereforence’

int* ptr; Declare avariable, ptr, thatisa
pointer to (i.e., holds the address of)
an int in memory.

int x = 5;

int y = 2; Declare two variables, xand y, that hold ints,
and sets them to 5 and 2, respectively.

ptr = &x;

Set ptr to the address of x.
Now, “ptr points to x”

“Dereference ptr”

Whatis *(&y) ?

y = 1 + *ptr;

Set y to: 1 plus the value at the address held by ptr.
Because ptr points to x, this is equivalent to y=1+x;

Writing pointertypes

Spaces between base type, *, and variable name do not matter.
The following are equivalent:

int* ptr;
Suggests: "The variable ptr holds the address of an intin memory."

int *ptr; will see this alot in others' code
Suggests: "There is an intin memory at the address held by the variable ptr."

Caveat: do not declare multiple variables on same line if usingthe former.

10/6/15

& =‘address of’
*=‘contents at address’
or ‘dereference’

Assignmentin C

A variable is represented by a memory location.
Initially, it may hold any value.

int x,y;
// xis at location 0x20, y is at 0xOC.

A7 ;00 ;32 ,00 | ox24
00 101 129 F3 0x20 X
EE |EE |EE |EE 0x1C
FA ,CE ,CA FE 0x18
26 100 100 100 | Ox14
00 ;00 ;10 ;00 0x10
01 ;00 ;00 ;00 | OxOC y
FF 100 F4 196 | 0x08
00 ;00 ;00 00 | Ox04
00 ;42 ;17 ;34 | 0x00

14

& =‘address of’
*=‘contents at address’
or ‘dereference’

Assignmentin C

Left-hand-side = right-hand-side;
LHS must evaluate to a place to store avalue.
RHS must evaluate to avalue.
Store RHS value at LHS location.

int x,y;

AL 0x24
x=0; 0x20 x
y =0x3CD02700; 0x1C

_ 3. 0x18
XSy +3; 0x14
// Get value at y, add 3, put itin x. 0x10
int* z = &y; 0x0C Y
// Get address of y, put itin z. g:gi .
*z=y; 0x00

// What does this do?

15

Arrays are adjacent locations in memory
storing the same type of data object.

a is a name for the array’s address,

not a pointer to the array.

Arrays in C

Declaration: int a[6];

element type
number of

name elements

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

Arrays are adjacent locations inmemory
storing the same type of data object.
a is a name for the array’s address,
Indexing: a[0] = 0x£0; not a pointer to the array.

a[5] = a[07]; The address of a[i] is the address of a[0]
plus i times the element sizein bytes.

Arrays in C

Declaration: int a[6];

No bounds a[6] = OxBAD;
check: a[-1] = OxBAD;
Pointers: int* p; 0x24
= a; 0x20 a[5]
equivalent {p _ !
p = &a[0]; 0x1C
*p = 0xA; 0x18
0x14
. p[l] = 0xB; 0x10
equivalent { *(p + 1) = 0xB; oxoc al0]
p=p+2; 0x08
0x04 p
array indexing = address arithmetic 0x00
Both are scaled by the size of the type.

*po=afl] + 1;

10/6/15

Array Allocation

Basic Principle
T A[N];
Array of data type T and length N
Contiguously allocated region of N * sizeof (T) bytes

charstring[lz];|||||||||||||

Use this to determine
propersize inC.

X X+ 12

int val[5]; [| | | | |
T T T
X X+ 4 x+8 X+ 12 x+ 16 x+ 20

double al3]; [| | |

1 T
X X+8 x+16 X +24

char* p(3]; []] Il 1A32

(or char *p[3];) 1 T 1 1

X X+ 4 x+8 X+ 12
|]] | lx86-64
T T 1
X X+ 8 x+ 16 X+ 24

Array Access
Basic Principle
T A[N];
Array of data type T and length N
Identifier A can be used as a pointer toarray element 0: Type T*

int val[5]; | O | 2 | | | |
1 T T T T T
X x+4 X+8 x+12 x+16 x+20

Reference Type Value

val[4] int
val int *
val+1 int *
&val[2] int *
val[5] int
*(val+1) int
val +i int *

Representing strings

A C-style string is represented by an array of bytes (char).
— Elements are one-byte ASCll codes for each character.
— ASCIl = American Standard Code for Information Interchange

32 space 48 0 64 @ 80 P 96) 112 P
33 ! 49 1 65 A 81 Q 97 a 113 q
34 " 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 N 99 c 115 s
36 S 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 u 101 e 117 u
38 & 54 6 70 F 86 \% 102 f 118 v
39 ’ 55 7 71 G 87 w 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 X

41) 57 9 73 I 89 Y 105 | 121 y
42 * 58 : 74 J 90 z 106 j 122 z
43 + 59 H 75 K 91 [107 k 123 {
44 s 60 < 76 L 92 \ 108 L 124 |

45 - 61 = 77 M| |93 1 109 m 125 }
46 . 62 > 78 N 94 ~ 110 n 126 ~

47 / 63 ? 79 [*] 95 _ 111 [127 del

Null-terminated Strings

m Cstrings are arrays of characters ending with the null character.
Why?
| 72 | 97 |114| 114| 121| 32 | 80 | 111| 116| 116| 101| 114| 0 |

H a r r y P o t t e r \0

m Compute the string length.

m Does Endianness matter for strings?

10/6/15

*vs []

Since
* array name == address of Oth element
* array indexing == pointer arithmetic
C programmers often use * where you might expect[]:
* eg.char*isa:
« pointer to a char
« pointer to the first char ina string of unknown length
int main(int argc, char** argv);
int strcmp(char* a, char* b);

Memory Layout

Local variables
Managed by compiler
(or cs240 programmer...)

writable; not executable Stack

—— —t—

Dynamic Data)
(Heap) Managed by programmer with

help from run-time systems.

writable; not executable

writable; not executable Static Data Initialized when process starts
read-only; not executable Literals Initialized when process starts
read-only; executable Instructions Initialized when process starts

Dynamic memory allocation

#include <stdlib.h>

void* malloc(size_t size)
_Successful:
Returns a pointer to a memory block of atleast size bytes
(typically) aligned to 8-byte boundary
If size == 0, returns NULL
Unsuccessful: returns NULL and sets errno
void free (vo_id* P)
Returns the block pointed at by p to pool of available memory
p must come from a previous call tomalloc

Malloc/free Example

void foo(int n, int m) {
int i, *p;

/* allocate a block of n ints */

P = (int *)malloc(n * sizeof (int));

if (p =— NULL) {
perror ("malloc"); // print an error message
exit (0) ;

}

for (i=0; i<n; i++) p[i] = i;

free(p); /* return p to available memory pool */

malloc rules:
cast result to proper pointer type
Usesizeof(...) to determine size

free rules:
Free only objects acquired from malloc, and only once.
Do not use an object after freeing it.

40

10/6/15

MAN, | 5UCK AT THIS GAME..
CAN YOU GIVE ME.
A FEW POINTERS?

0x3A28213A
0x6339332C, http://xkcd.com/138/
Ox7363682E.

| HATE YoU. /

Y

Memory-Related Perils and Pitfalls in C

(Terrible things to do with pointers, part 1.)

Dereferencing bad pointers

See lab exercises for:
Reading uninitialized memory
Overwriting memory
Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Scanf: read formatted input

int val; Declared, but not initialized
- holds anything.
scanf (“'$d”, &val) ;
Read one int Store it in memory | i.e, storeitin memory at the address
from input. at this address where the contents ofval is stored:
store into memory at OxFFFFFF38.
OXFFFFFF3C
val [BA" D4~ FA~ CE | OxFFFFFF38
OXFFFFFF34

43

The classic scanfbug

Forget one symbol... unleash certain doom.

int val; Declared, but not initialized

- holds anything.

scanf (“'$d”, wval);

Read one int Store it inmemory | i.e, storeitin memory at the address
from input. at this address given by the contents of val:

val

store into memory at 0OxBAD4FACE.

Best case: segmentation fault,

OXFFFFFF3C or bus erroy; crash.
BA D4 FA CE | OxFFFFFF38
OxFFFFFF34 Worst case: silently corrupt data
stored at address OxBAD4FACE,
CA FE 12 34 OxBAD4EACE and val still holds OXBAD4FACE.

44

10/6/15

C memory error messages

OKAY, HUMAN. YOU KNOW WHEN YOURE | AND SUDDENLY YoU | WELL, THATS WKaT A
HOH? F\ FALLING ASLEER AND NISSTER, STUMBLE, SEGFAULT FEELS LIKE.
1UR? YOU IMAGINE YOURSELF | AND JOLT AWAKE?

HIT (OMPILE, A SOVMETHING, y

N
BERORE YoU WALKING OR YEAM! DOUBLE - CHECK YOUR
: ;ﬁ DMV POINTERS, OKAY?

1 Sul

http://xkcd.com/371/

11:segmentation fault
accessing address outside legal area of memory

10: bus error

accessing misaligned or other problematic address

Practice debugging in lab!

Why C?

Why learn C?

Think like actual computer: abstraction very close to machine level.
Understand just how much Your Favorite Language provides.
Understand just how much Your Favorite Language might cost.
Classic.

Still (more) widely used (than it should be).

Pitfalls still fuel many security wlnerabilities, devastating bugstoday.

Why not use C?

Almost definitely not the right language for your next personal project.

It "gets out of the programmer's" way even when the programmeris
running towards a blind cliff.

Many advances in other programming languages since then fix a lot of
its problems while keeping strengths.

10/6/15

