Wellesley CS 240 - Digital Logic 8/31/16

Circuits

ех

Connect inputs and outputs of gates with wires. Crossed wires touch *only if* there is a dot.

What is the output if A=1, B=0, C=1? What is the truth table of this circuit? What is an equivalent Boolean expression? **Translation**

Connect gates to implement these functions. Check with truth tables. Use a direct translation -- it is straightforward and bidirectional.

$$F = (A\overline{B} + C)D$$

$$Z = W + (X + WY)$$

- Note on notation: bubble = inverse/complement

Identity law, inverse law

$$A \longrightarrow A \longrightarrow A$$

Commutativity, Associativity

Idempotent law, Null/Zero law

$$A = A = 0$$

Note on notation: bubble = inverse/complement -

DeMorgan's Law

(double bubble, toil and trouble, in Randy's words...)

$$A \longrightarrow A + B$$

One law, Absorption law

Write truth tables. Do they correspond to simpler circuits?

NAND is universal.

All Boolean functions can be implemented using only NANDs. Build NOT, AND, OR, NOR, using only NAND gates.

ех

ex

Circuit derivation: code detectors

AND gate + NOT gates = code detector, recognizes exactly one input code.

Design a 4-input code detector to output 1 if ABCD = 1001, and 0 otherwise.

A B C D

Design a 4-input code detector to accept two codes (ABCD=1001, ABCD=1111) and reject all others. (accept = 1, reject = 0)

Circuit derivation: **sum-of-products** form

logical sum (OR) of products (AND)

of inputs or their complements (NOT)

Draw the truth table and **design a sum-of-products circuit** for a 4-input code detector to accept two codes (ABCD=1001, ABCD=1111) and reject all others. **How are the truth table and the sum-of-products circuit related?**

Voting machines

A **majority circuit** outputs 1 if and only if a majority of its inputs equal 1. Design a majority circuit for three inputs. Use a sum of products.

Α	В	С	Majority
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Triply redundant computers in spacecraft

Space program also hastened Integrated Circuits.

Margaret Hamilton (speaking of space and reliability)

Led software team for **Apollo 11** Guidance Computer. Developed software engineering techniques for correctness and reliability.

Coined "software engineering".

Software avoided mission abort on first moon landing!

