
Virtual	Memory
Process	Abstraction,	Part	2:	Private	Address	Space

Motivation:	 why	not	direct	physical	memory	access?
Address	 translation with	pages
Optimizing	 translation:	 translation	 lookaside buffer
Extra	benefits:	sharing	and	protection

Memory	as	a	contiguous	array	of	bytes	is	a	lie!		Why?

1



Problems	with	Physical	Addressing

2

Fine	for	small	embedded	systems	without	processes.
Elevators,	 microwaves,	 radio-powered	 devices,	 …

0:
1:

M-1:

Main	memory

CPU
2:
3:
4:
5:
6:
7:

Physical	address
(PA)

Data

8: ...

4

What	about
larger	systems?

With	many	processes?



Problem	1:	Memory	Management

3

Main	memory

What	goes	
where?

stack
heap
code

globals
…

Process	1
Process	2
Process	3
…
Process	n

×

Also:
Context	switches must	swap	out	entire	memory	contents.
Isn't	that	expensive?



Problem	2:	Capacity

4

64-bit	addresses	 can	address
several	exabytes

(18,446,744,073,709,551,616	bytes)

Physical	main	memory	offers
a	few	gigabytes

(e.g.	8,589,934,592	bytes)

?

1	virtual	address	space	per	process,	
with	many	processes…

(Actually,	it’s	smaller	 than	that
dot	compared	to	virtual	memory.)



Problem	3:	Protection

5

Physical	main	memory

Process	 i

Process	 j

Problem	4:	Sharing
Physical	main	memory

Process	 i

Process	 j



Solution:	 Virtual	Memory	(address	indirection)

6

Private	virtual	address	space	
per	process.

Physical	memory

Virtual	memory

Virtual	memory

Process	1

Process	n

virtual-to-physical

mapping

virtual	
addresses

physical	
addresses

virtual	
addresses

Single	physical	address	space	
managed	by	OS/hardware.



Indirection

Direct	naming

Indirect	naming

7

"2"

"x" 2

What	if	we	move	Thing?

Thing

7

0
1

2

3

6

5

4
What	X	
currently	
maps	to

"2"

"2"

"x"
"x"

"x"

(it's	everywhere!)



Tangent: Indirection	everywhere
• Pointers
• Constants
• Procedural	abstraction
• Domain	Name	Service	(DNS)
• Dynamic	Host	Configuration	Protocol	(DHCP)
• Phone	numbers
• 911
• Call	centers
• Snail	mail	forwarding
• …

“Any	problem	in	computer	science	can	be	solved	by	adding	another	level	of	indirection.”
–David	Wheeler,	inventor	of	the	subroutine,	or	Butler	Lampson

Another	Wheeler	quote?	"Compatibility	 means	deliberately	 repeating	other	people's	mistakes."



Virtual	Addressing	and	Address	Translation

9
Physical	addresses	are invisible to	programs.

0:
1:

M-1:

Main	memory

MMU
2:
3:
4:
5:
6:
7:

Physical	address
(PA)

Data

8: ...

CPU
Virtual	address

(VA)

CPU	Chip

44100

Memory	Management	Unit
translates	 virtual	address	to	physical	address



Page-based	Mapping

Physical
Address	Space

Physical	
Page
0

Physical	
Page
1

…
Physical	
Page
2p - 1

0

2m - 1

Virtual
Address	Space

Virtual
Page
0

Virtual
Page
1

…
Virtual
Page
2v - 1

0

2n - 1

Virtual
Page
2

Virtual
Page
3

both	address	spaces
divided	into	fixed-size,	aligned	pages
page	size	=	power	of	two

Map	virtual	pages	
onto	physical	pages.

Some	virtual	pages	do	not	fit!		Where	are	they	stored?



Some	virtual	pages	do	not	fit!		Where	are	they	stored?

Physical	Memory
Address	Space

Physical	
Page
0

Physical	
Page
1

…
Physical	
Page
2p - 1

0

2m - 1

Virtual	Memory
Address	Space

Virtual
Page
0

Virtual
Page
1

…
Virtual
Page
2v - 1

0

2n - 1

Virtual
Page
2

Virtual
Page
3

1.	On	disk (if	used)

2.	Nowhere! (if	not	yet	used)

virtual	address	space
usually	much	larger	than
physical	address	space



Virtual	Memory:	cache	for	disk?

12

DiskMain	
Memory

L2	
unified	
cache

L1	
I-cache

L1	
D-cache

CPU Reg

2	B/cycle8	B/cycle16	B/cycle 1	B/30	cyclesThroughput:
Latency: 100	cycles14	cycles3	cycles millions

~4	MB

32	KB

~8	GB ~500	GB

Example	system

Cache	miss	 penalty
(latency):	33x

Memory	miss	penalty
(latency):	10,000x

SRAM DRAM

solid-state	"flash"
or

spinning
magnetic	platter.

Not	drawn	to	scale	



Design	for	a	Slow	Disk:	Exploit	Locality

Physical	Memory
Address	Space

Physical	
Page
0

Physical	
Page
1

…
Physical	
Page
2p - 1

0

2m - 1

Virtual	Memory
Address	Space

Virtual
Page
0

Virtual
Page
1

…
Virtual
Page
2v - 1

0

2n - 1

Virtual
Page
2

Virtual
Page
3

on	disk

Fully	associative
• Store	any	virtual	page	in	any	physical	page
• Large	mapping	function

Large	page	size
usually	4KB,	up	to	2-4MB

Sophisticated
replacement	policy
• Not	just	hardware Write-back

Associativity?

Page	size?

Replacement	
policy? Write	

policy?



Address	Translation

15

What	happens	in	here?

0:
1:

M-1:

Main	memory

MMU
2:
3:
4:
5:
6:
7:

Physical	address
(PA)

Data

8: ...

CPU
Virtual	address

(VA)

CPU	Chip

44100



Page	Table
array	of	page	table	entries (PTEs)
mapping	virtual	page	to	where	 it	is	stored

16

Physical	pages
(Physical	memory)

Swap	space
(Disk)

VP	7

VP	4

PP	0

VP	2

VP	1

PP	3

How	many	page	tables	are	in	the	system?

null

null

page	table

0
1

0

0
1
1
0
1

Valid
Physical	Page	Number

or	disk	address

PTE	0

PTE	7

Memory	resident,
managed	by	HW	(MMU),	OS

VP	3

VP	6



Address	Translation	with	a Page	Table

17

Virtual	page	number (VPN) Virtual	page	offset (VPO)

Physical	page	number (PPN) Physical	page	offset (PPO)

Virtual	address (VA)

Physical	address	 (PA)

Valid Physical	page	number	(PPN)

Page	table	
base	register

(PTBR)

Page	table	
Base	address
of	current	process's
page	table

Virtual	page	mapped
to	physical	page?

If	so:	Page	Hit



On	disk

Page	Hit: virtual	page	in	memory

18

Physical	pages
(Physical	memory)

Swap	space
(Disk)

VP	7

VP	4

PP	0VP	1

PP	3

On	disk
PP	2

null

null
PP	0
PP	1

PP	3

page	table

0
1

0

0
1
1
0
1

Valid
Physical	Page	Number

or	disk	address
PTE	0

PTE	7

Virtual	 Page	Number

VP	2

VP	3

VP	6



PP	1

PP	3
On	disk

Page	Fault:

19

Physical	pages
(Physical	memory)

Swap	space
(Disk)

VP	7

VP	4

PP	0VP	1

PP	3

On	disk
PP	2

null

null
PP	0

page	table

0
1

0

0
1
1
0
1

Valid
Physical	Page	Number

or	disk	address
PTE	0

PTE	7

Virtual	 Page	Number

VP	2

VP	3

VP	6

PP	1

PP	2



Process

Page	Fault:	exceptional	control	flow

Process	accessed	 virtual	address	 in	a	page	that	is	not	in	physical	memory.

20

User	Code OS	exception	handler

exception:	page	fault

Load	page
into	memoryreturn

movl

Returns	to	faulting	instruction:
movl is	executed	again!



PP	1

PP	3
On	disk

Page	Fault:	1. page	not	in	memory

21

Physical	pages
(Physical	memory)

Swap	space
(Disk)

VP	7

VP	4

PP	0VP	1

PP	3

On	disk
PP	2

null

null
PP	0

page	table

0
1

0

0
1
1
0
1

Valid
Physical	Page	Number

or	disk	address
PTE	0

PTE	7

Virtual	 Page	Number

VP	2

What	now?
OS	handles	fault

VP	3

VP	6



null

0 On	disk
PP	1
On	disk

PP	3

Page	Fault:	2. OS	evicts	another	page.

22

Physical	pages
(Physical	memory)

Swap	space
(Disk)

VP	7

VP	4

PP	0VP	1

PP	3

VP	3

On	disk
PP	2

null

page	table

0
1

0

0

1
0

1

Valid
Physical	Page	Number

or	disk	address
PTE	0

PTE	7

VP	6

Virtual	 Page	Number

VP	2

"Page	out"

VP	1



PP	11

PP	3
PP	0

Page	Fault:	3. OS	loads	needed	page.

23

Physical	pages
(Physical	memory)

Swap	space
(Disk)

VP	7

VP	4

PP	0

VP	2

PP	3

On	disk
PP	2

null

null
On	disk

page	table

0
1

0

0
1

1
1

Valid
Physical	Page	Number

or	disk	address
PTE	0

PTE	7

Virtual	 Page	Number

VP	3

VP	6

VP	1

VP	3

Finally:
Re-execute	faulting	instruction.
Page	hit!

"Page	in"



Terminology
context	switch

Switch	control	between	processes	 on	the	same	CPU.

page	in
Move	page	of	virtual	memory	from	disk	to	physical	memory.

page	out
Move	page	of	virtual	memory	from	physical	memory	to	disk.

thrash
Total	working	set	size	of	processes	 is	larger	 than	physical	memory.
Most	time	is	spent	paging	in	and	out	instead	of	doing	useful	 computation.

(I	find	all	these	terms	useful	when	talking	to	other	computer	scientists	about	my	brain…)

24

swap



Address	Translation:	Page	Hit

25

1)	Processor	 sends	virtual	address	 to	MMU	(memory	management	unit)

2-3)	MMU	fetches	PTE	from	page	table	 in	cache/memory

4)	MMU	sends	physical	address	 to	cache/memory

5)	Cache/memory	 sends	data	word	to	processor

MMU Cache/
Memory

PA

Data

CPU VA

CPU	Chip PTEA

PTE
1

2

3

4

5



Address	Translation:	Page	Fault

26

1)	Processor	 sends	virtual	address	 to	MMU	
2-3)	MMU	fetches	PTE	from	page	table	 in	cache/memory
4)	Valid	bit	is	zero,	 so	MMU	triggers	page	fault	exception
5)	Handler	 identifies	 victim	(and,	if	dirty,	pages	 it	out	to	disk)
6)	Handler	pages	 in	new	page	and	updates	PTE	in	memory
7)	Handler	 returns	 to	original	process,	 restarting	 faulting	instruction

MMU Cache/
Memory

CPU VA

CPU	Chip PTEA

PTE
1

2

3

4

5

Disk

Page	fault	handler

Victim	page

New	page

Exception

6

7



Translation	Lookaside Buffer	(TLB)
Small	hardware	cache	in	MMU	just	for	page	table	entries

e.g.,	128	or	256	entries

Much	faster	than	a	page	table	lookup	in	memory.

In	the	running	for	"un/classiest	name	of	a	thing	in	CS"

27

How	fast	is	translation?
How	many	physical	memory	accesses	are	required	to	complete	
one	virtual	memory	access?



TLB	Hit

28

MMU Cache/
Memory

PA

Data

CPU VA

CPU	Chip

PTE

1

2

4

5

A	TLB	hit	eliminates	a	memory	access

TLB

VPN 3



TLB	Miss

29

MMU Cache/
MemoryPA

Data

CPU VA

CPU	Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA
3

A	TLB	miss	incurs	an	additional	memory	access	(the	PTE)
Fortunately,	TLB	misses	are	rare.	 	Does	a	TLB	miss	require	 disk	access?



Simple	Memory	System	Example	(small)

Addressing
14-bit	virtual	addresses
12-bit	physical	address
Page	size	=	64	bytes

30

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

Virtual	Page	Number Virtual	Page	Offset

Physical	Page	Number Physical	Page	Offset

Simulate	accessing	 these	virtual	addresses	 on	
the	system:	0x03D4, 0x0B8F, 0x0020



Simple	Memory	System	Page	Table
Only	showing	first	16	entries	(out	of	256	=	28)

What	about	a	real	address	space?		Read	more	in	the	book…

31

10D0F
1110E
12D0D
0–0C
0–0B
1090A
11709
11308

ValidPPNVPN

0–07
0–06
11605
0–04
10203
13302
0–01
12800

ValidPPNVPN

virtual	page	#___	 			TLB	index___	 			TLB	tag	____	 			TLB	Hit?	__		Page	Fault?	__	physical	page	#:	____



Simple	Memory	System	TLB

16	entries
4-way	associative

32

13 12 11 10 9 8 7 6 5 4 3 2 1 0

virtual	page	offsetvirtual	page	number

TLB	indexTLB	tag

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

TLB	ignores	page	offset. Why?

virtual	page	#___	 			TLB	index___	 			TLB	tag	____	 			TLB	Hit?	__		Page	Fault?	__	physical	page	#:	____



Simple	Memory	System	Cache

16	lines
4-byte	block	size
Physically	addressed
Direct	mapped

33

11 10 9 8 7 6 5 4 3 2 1 0

physical	page	offsetphysical	page	number

cache	offsetcache	indexcache	tag

03DFC2111167
––––0316
1DF0723610D5

098F6D431324
––––0363
0804020011B2
––––0151
112311991190
B3B2B1B0ValidTagIdx

––––014F
D31B7783113E
15349604116D

––––012C
––––00BB
3BDA159312DA
––––02D9
8951003A1248
B3B2B1B0ValidTagIdx

cache	offset___ cache	index___ cache	tag____ Hit?	__														Byte:	____



Simple	address	space	allocation
Process	needs	private	contiguous address	space.

Storage	of	virtual	pages	in	physical	pages	is	fully	associative.

40

0

N-1

VP	1
VP	2
...

0

N-1

VP	1
VP	2
...

PP	2

PP	6

PP	8

...

0

M-1

PP	9

Process	1:
Physical	Address	Space	(DRAM)

Process	2:

Virtual	Address	Spaces	



Simple	cached	access	to	storage	>	memory
Good	locality,	or	least	"small"	working	set	=	mostly	page	hits

If	combined	working	set	>	physical	memory:
Thrashing: Performance	 meltdown.	CPU	always	waiting	or	paging.

Full	indirection	quote:
“Every	problem	in	computer	 science	can	be	solved	by	adding	another	 level	
of	indirection,	but	that	usually	will	create	another	problem.”

41

All	necessary	
page	table	entries	

fit	in	TLB

Working	set	pages
fit	in	physical	memory



Freebies
Protection:

All	accesses	 go	through	 translation.
Impossible	 to	access	physical	memory	not	mapped	in	virtual	address	 space.	

Sharing:
Map	virtual	pages	 in	separate	 address	 spaces	 to	same	physical	page (PP	6).

42

Process	1:
Physical	Address	Space	(DRAM)

0

N-1
(e.g.,	execute-only
library	code:	libc)

Process	2:

VP	1
VP	2
...

0

N-1

VP	1
VP	2
...

PP	2

PP	6

PP	8

...

0

M-1

Virtual	Address	Spaces	



Memory	permissions

43

Process	1: Physical	Page	NumWRITE EXEC
PP	6NoNo
PP	4No Yes
PP	2Yes

Process	2:

No

READ
Yes

No
Yes

WRITE EXEC
PP	9Yes No
PP	6NoNo
PP	11Yes No

READ

Yes
No

VP	0:
VP	1:
VP	2:

VP	0:
VP	1:
VP	2:

Physical	
Address	Space

PP	2

PP	4

PP	6

PP	8
PP	9

PP	11

Yes
Yes
Yes

Yes
Yes
Yes

Valid

Valid Physical	Page	Num

permission	bits

Page	Table

Page	Table

permission	bits

MMU	checks	on	every	access.
Exception	 if	not	allowed.

Yes

How	would	you	set	permissions	 for	the	stack,	heap,	global	variables,	 literals,	 code?



Summary:	Virtual	Memory
Programmer’s	view	of	virtual	memory

Each	process	has	its	own	private	 linear	address	 space
Cannot	be	corrupted	 by	other	processes

System	view	of	virtual	memory
Uses	memory	efficiently	 (due	 to	locality)	by	caching	virtual	memory	pages
Simplifies	memory	management	and	sharing
Simplifies	protection	 -- easy	to	interpose	 and	check	permissions
More	goodies:

• Memory-mapped	 files
• Cheap	 fork()	with	copy-on-write	 pages	 (COW)

45



Summary:	Memory	Hierarchy

L1/L2/L3	Cache:	Pure	Hardware
Purely	an	optimization
"Invisible"	 to	program	and	OS,	no	direct	control
Programmer	 cannot	control	caching,	can	write	code	that	fits	well

Virtual	Memory:	Software-Hardware	Co-design
Supports	processes,	 memory	management
Operating	System	(software)	manages	 the	mapping

Allocates	physical	memory
Maintains	page	tables,	permissions,	metadata
Handles	exceptions

Memory	Management	 Unit	(hardware)	 does	 translation	and	checks
Translates	 virtual	addresses	 via	page	tables,	enforces	 permissions
TLB	caches	the	mapping

Programmer	 cannot	control	mapping,	can	control	sharing/protection	 via	OS
46


