Virtual Memory
Process Abstraction, Part 2: Private Address Space

Motivation: why not direct physical memory access?
Address translation with pages

Optimizing translation: translation lookaside buffer
Extra benefits: sharing and protection

Memory as a contiguous array of bytes is a liel Why?

Problems with Physical Addressing

Fine for small embedded systems without processes.

Elevators, microwaves, radio-powered devices, ...

What about
Main memory larger systems?
0:
1:
Physical address 2: With many processes?

PA 1 :
CPU Sia N
4 5:

N]
6:
7:
8:
M-1

Data

Problem 1: Memory Management

Process 1
Process 2

Process 3
X

Process n

Also:

stack
heap

code
globals

What goes
where?

Main memory

Context switches must swap out entire memory contents.

Isn't that expensive?

Problem 2: Capacity

64-bit addresses can address Physical main memory offers
several exabytes a few gigabytes
(18,446,744,073,709,551,616 bytes) (e.g. 8,589,934,592 bytes)

Actually, it’s smaller than that
dot compared to virtual memory.)

1 virtual address space per process,
with many processes...

Problem 3: Protection

Physical main memory
Process i
Process | >

Problem 4: Sharing

Physical main memory

Solution: Virtual Memory (address indirection)

Virtual memory

Process 1

virtual
addresses

Virtual memory

Process n _
virtual

addresses

Private virtual address space

per process.

virtual-to-physical

mapping

Physical memory

physical
addresses

Single physical address space

managed by OS/hardware.

Indirection oy

(it's everywhere!)

Direct naming non

ll2ll —D

What X 7
TR] currently /,’

X \mps to//
Indirect naming e 2 [
||x|| //

X

What if we move Thing?

N o0 D W N R, O

Tangent: Indirection everywhere

Pointers

Constants

Procedural abstraction

Domain Name Service (DNS)

Dynamic Host Configuration Protocol (DHCP)
Phone numbers

911

Call centers

Snail mail forwarding

“Any problem in computer science can be solved by adding another level of indirection.”
—David Wheeler, inventorof the subroutine, or Butler Lampson

Another Wheeler quote? "Compatibility means deliberately repeating other people's mistakes."

Virtual Addressing and Address Translation

Memory Management Unit
translates virtual address to physical address
Main memory

0:
CPU Chip 1:
Virtual address Physical address 2:
(VA) (PA) 3:
CPU > MMU 7 > 4:
4100 5:
A y
6:
7:
8:
M-1:

Data

Physical addresses are invisible to programs.

Page-based Mapping

both address spaces

Virtual divided into fixed-size, aligned pages
Address Space page size = power of two
0 Virtual Physical
Pa(a;;e Address Space
0 .
Virtual P:;ysmal
Page a(;ge
1
Virtual Physical
bage Page
5 1
Virtual
Page Map virtual pages oee
3 .
onto physical pages. Physical
eee® Page
: m _ 2P -1
Virtual
Page
n_1 2V-1

Some virtual pages do not fit! Where are they stored?

Some virtual pages do not fit! Where are they stored?

Virtual Memory virtual address space
Address Space usually much larger than
O [virtual physical address space
Page

0

Virtual

Page
1

Virtual

Page
2

Virtual

Page
3

1. On disk (if used)

t
20 -1 * 2. Nowhere! (if not yet used)

Not drawn to scale

Virtual Memory: cache for disk?

CPU

SRAM DRAM
~4 MB] (~8 GB \
L1
I-cache
sz . Main
37 KB unifie
cache Memory
L1
Reg
D-cache
Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles
3 cycles 14 cycles 100 cycles millions

Latency:

Example system

Cache miss penalty

(latency): 33x

Memory miss penalty
(latency): 10,000x

~500 GB

Disk

solid-state "flash"
or
spinning
magnetic platter.

Design for a Slow Disk: Exploit Locality

Virtual Memory
Address Space

Page size?

0 Virtual
Page
0

Virtual
Page
1

Physical Memory
Address Space

0

\

Virtual
Page
2

Associativity?

\a. Page

Virtual
Page
3

on disk

“
2n-1 |V

Replacement

policy?

2m.-

Physical

0

$ Page

Physical

1

Physical
Page
2P -1

Write
policy?

Address Translation

CPU Chip

CPU

A

0:

1:

Virtual address Physical address 2:
VA PA 3: :

VAL MMU) B
4100 4 5. |

6:
7:)

8:

What happens in here?
M-1

Main memory

Data

Page Table

array of page table entries (PTEs)

mapping virtual page to where it is stored

Physical pages
(Physical memory)

VP 1 PP 0
Physical Page Number
Valid or disk address VP 2
1 — VP 7
1 ./'/
0 o —> VP4 PP 3
1 o
0 null \\ P
0 N AN
~ N\
PTE7 | 1 o« — . Swap space
~ AN .
page table ~._ "~ (Disk)
s S, Y vp3
Memory resident, RN o
managed by HW (MMU), OS A VP 6

How many page tables are in the system?

16

Address Translation with a Page Table

Page table
base register
(PTBR)

Base address
of current process's
page table

Virtual address (VA)

Virtual page number (VPN)

Virtual page offset (VPO)

Page table

>Valid Physical page number (PPN)

Virtual page mapped <

to physical page?

If so: Page Hit

v

A 4

Physical page number (PPN)

Physical page offset (PPO)

Physical address (PA)

Page Hit: virtual page in memory

Virtual Page Number

Physical pages
(Physical memory)

Physical Page Number il o
Valid or disk address VP 2
PTEO | O null //
1 [pPO — V7
— 5] 1 |PP1 0/4
0 [Ondisk & L o
1 |PP3 o~
0 null \\ -
0 |On disk e AN
PTE7 | 1 |PP2 o%\\) Swap space
page table . DIk
A VP 3

VP 6

Page Fault:

Virtual Page Number

Physical Page Number

Valid or disk address
PTEO | O null
1 [PPO
1 |[PP1
—> 0 | On disk
1 [PP3
0 null
0 | Ondisk
PTE7 | 1 |PP2

page table

Swap space
(Disk)

Physical pages
(Physical memory)

VP 1

VP 2

VP 7

VP 4

VP 3

VP 6

PP 0O

PP 1

PP 2

PP 3

Page Fault: exceptional control flow

Process accessed virtual address in a page that is not in physical memory.

Process

User Code

movl

OS exception handler

exception: page fault

>
Load page

~ into memor
I’Eturn ~~‘~-~~ y

Returnsto faultinginstruction:
movl is executed again!

20

Page Fault: 1. page not in memory

Virtual Page Number

Physical pages
(Physical memory)

VP 1 PP O
Physical Page Number
Valid or disk address VP 2
1 |PPO — VP
1 [pPP1 —
—> 0 | On disk L ¥) e i
1 |PP3 — N
0 null \\ -
0 |Ondisk e N
PTE7 | 1 |PP2 ./(‘\\\ Swap space
page table . Disk)
A VP 3
What now? s VP6

OS handles fault

21

Page Fault: 2. 0S evicts another page.

Virtual Page Number

1

"Page out

Physical pages
(Physical memory)

. PP 0O
Physical Page Number
Valid or disk address VP 2
PTEO | O null /
O | Ondisk Q P
1|PP1 —
> 0 |Ondisk & - e e
1 |PP3 ———_
0 null Mo
0 |On disk e RS
PTE7 | 1 [PP2 o/(\\ AN Swap space
page table ">\ "~ (0K
\:\: N VP3
A VP 6

VP 1

Page Fault: 3. 0S loads needed page.

Virtual Page Number

Physical Page Number

Valid or disk address
PTEO | O null
1 | On disk
1 |PP1
—>1 1 |PPO I
1 |PP3 o—~
0 null AN A
0 | On disk o \
PTE7 | 1 |PP2 o« " ~_ N
N o \
S \
page table
Finally: \?

Re-execute faulting instruction.
Page hit!

"Page in"

Physical pages
(Physical memory)

VP 3 PP 0
VP 2
VP 7
—> VP 4 PP 3
Swap space
(Disk)
VP 6
VP 1

23

Terminology

context switch

pagein

swa
page out g P

thrash

Address Translation: Page Hit

CPU Chip

CPU

MMU

PTEA

PTE

PA

Data

Cache/
Memory

25

Address Translation: Page Fault

Exception

CPU Chip
(1
VA

CPU
(7

Page fault handler

v

Victim page
0
Cache/
Memory
New page

Disk

26

How fast is translation?

How many physical memory accesses are required to complete
one virtual memory access?

Translation Lookaside Buffer (TLB)

Small hardware cache in MMU just for page table entries
e.g., 128 or 256 entries

Much faster than a page table lookup in memory.

In the running for "“un/classiest name of a thing in CS"

TLB Hit

CPU Chip
TLB

o PTE
VPN e

(1

VA PA

CPU MMU
] 4

Data
©

A TLB hit eliminates a memory access

Cache/
Memory

28

TLB Miss

CPU Chip
TLB
(4
0 PTE
VPNI }
w ®
VA PTEA
PA s| Memory
©
Data
6

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Does a TLB miss require disk access?

29

Simple Memory System Example (small)

Addressing Simulate accessing these virtual addresses on

o the system: 0x03D4, O0xOB8F, 0x0020
14-bit virtual addresses

12-bit physical address
Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

v

VPN > VPO

Virtual Page Number Virtual Page Offset

11 10 9 8 7 6 5 4 3 2 1 0

A

PPN > PPO
Physical Page Number Physical Page Offset

v

30

Simple Memory System Page Table

Only showing first 16 entries (out of 256 = 28)

virtualpage# TLBindex TLBtag TLB Hit? __ PageFault? __ physicalpage #:
VPN | PPN | Valid VPN | PPN | Valid
00 28 1 08 13 1
01 — 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B - 0
04 - 0 0C - 0
05 16 1 0D 2D 1
06 - 0 OE 11 1
07 - 0 OF 0D 1

What about a real address space? Read more in the book...

31

Simple Memory System TLB

16 entries

4-way associative
TLB ignores page offset. Why?

A

TLB tag > TLB index
13 12 11 10 9 8 7 6 5 4 3 2 1 0

<— virtual page number >

virtual page offset ——

virtualpage# TLBindex TLBtag TLB Hit? __ PageFault? __ physical page #:
Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid

0 03 — 0 09 (0] 1 00 - 0 07 02 1

1 03 2D 1 02 - 04 - 0A - 0

2 02 - 0 08 - 0 06 - 0 03 - 0

3 07 - 0 03 oD 1 OA 34 1 02 - 0

32

Simple Memory System Cache

16 lines

A

cache tag »<+—— cache index —*cache offset
11 10 9 8 7 6 5 4 3 2 1 0

4-byte block size

Physically addressed

<— physical page number —<— physical page offset ——

Direct mapped

cache offset cacheindex_ cache tag_ Hit? Byte:

ldx Tag Valid BO B1 B2 B3 ldx Tag Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 0D 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 - - - -

33

Simple address space allocation

Process needs private contiguous address space.

Storage of virtual pages in physical pages is fully associative.

Virtual Address Spaces Physical Address Space (DRAM)
0 0
Process 1:
VP 1 —
VP 2 PP 2
N-1
PP 6
0
Process 2: S| pps
i \| PP 9
VP2

N-1 M-1

Simple cached access to storage > memory

Good locality, or least "small" working set = mostly page hits

N\ N\

All necessary
page table entries
fit in TLB

Working set pages
fit in physical memory

If combined working set > physical memory:
Thrashing: Performance meltdown. CPU always waiting or paging.

Full indirection quote:

“Every problem in computer science can be solved by adding another level
of indirection, but that usually will create another problem.”

Freebies

Protection:

All accesses go through translation.

Impossible to access physical memory not mapped in virtual address space.

Sharing:

Map virtual pages in separate address spaces to same physical page (PP 6).

Virtual Address Spaces

0

Process 1:
N-1

Process 2:
N-1

0
VP 1 \
VP 2 PP 2
PP 6
—> PP8
VP 1
VP2
M-1

Physical Address Space (DRAM)

(e.g., execute-only
library code: libc)

42

Memory permissions

MMU checks on every access.
Exception if not allowed.

permission bits Physical
Process 1: valid READ WRITE EXEC Physical Page Num Address Space
VP O: Yes No No Yes PP 6
VP1: | Yes No No Yes PP 4
VP2: | Yes Yes Yes No PP 2 P2
Page Table PP 4
permission bits PE6
Process 2: Vvalid READ WRITE EXEC Physical Page Num PP g
VP O: Yes Yes Yes No PP9 PP 9
VP 1: Yes No No Yes PP 6
VP2: | Yes Yes No No PP 11 PP 11
Page Table

How would you set permissions for the stack, heap, global variables, literals, code?

Summary: Virtual Memory

Programmer’s view of virtual memory

System view of virtual memory

Summary: Memory Hierarchy

L1/L2/L3 Cache: Pure Hardware

Virtual Memory: Software-Hardware Co-design

